Hopf Bifurcation Theorem

  • Toru Maruyama
Part of the Monographs in Mathematical Economics book series (MOME, volume 2)


The Hopf bifurcation theorem provides an effective criterion for finding periodic solutions for ordinary differential equations. Although various proofs of this classical theorem are known, there seems to be no easy way to arrive at the goal.


  1. 1.
    Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge University Press, Cambridge (1993) Google Scholar
  2. 2.
    Carleson, L.: On the convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966) Google Scholar
  3. 3.
    Chang, W.W., Smyth, D.J.: The existence and persistence of cycles in a non-linear model of Kaldor’s 1940 model re-examined. Rev. Econ. Stud. 38, 37–44 (1971) Google Scholar
  4. 4.
    Crandall, M.G., Rabinowitz, P.H.: The Hopf bifurcation theorem. MRC Technical Summary Report, No. 1604, University of Wisconsin Math. Research Center (1976) Google Scholar
  5. 5.
    Evans, L.: Partial Differential Equations. American Mathematical Society, Providence (1998) Google Scholar
  6. 6.
    Frisch, R.: Propagation problems and inpulse problems in dynamic economics. In: Economic Essays in Honor of Gustav Cassel. Allen and Unwin, London (1933) Google Scholar
  7. 7.
    Hicks, J.R.: A Contribution to the Theory of the Trade Cycle. Oxford University Press, London (1950) Google Scholar
  8. 8.
    Hopf, E.: Abzweigung einer periodishcen Lösung von einer stationären Lösung eines Differentialsystems. Ber. Math. Phys. Sächsische Akademie der Wissenschafters, Leipzig 94, 1–22 (1942) Google Scholar
  9. 9.
    Hunt, R.A.: On the convergence of Fourier series. In: Proceedings of the Conference on Orthogonal Expanisions and their Continuous Analogues, Southern Illinois University Press, Carbondale, pp. 234–255 (1968) Google Scholar
  10. 10.
    Kaldor, N.: A model of the trade cycle. Econ. J. 50, 78–92 (1940) CrossRefGoogle Scholar
  11. 11.
    Keynes, J.M.: The General Theory of Employment, Interest and Money. Macmillan, London (1936) Google Scholar
  12. 12.
    Maruyama, T.: Suri-keizaigaku no Hoho (Methods in Mathematical Economics). Sobunsha, Tokyo (1995) (Originally published in Japanese)Google Scholar
  13. 13.
    Maruyama, T.: Existence of periodic solutions for Kaldorian business fluctuations. Contemp. Math. 514, 189–197 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Maruyama, T.: On the Fourier analysis approach to the Hopf bifurcation theorem. Adv. Math. Econ. 15, 41–65 (2011) Google Scholar
  15. 15.
    Maruyama, T.: Shinko Keizai Genron (Principles of Economics). Iwanami Shoten, Tokyo (2013) (Originally published in Japanese)Google Scholar
  16. 16.
    Masuda, K. (ed.): Ohyo-kaiseki Handbook (Handbook of Applied Analysis). Springer, Tokyo (2010) (Originally published in Japanese) Google Scholar
  17. 17.
    Samuelson, P.A.: Interaction between the multiplier analysis and the principle of acceleration. Rev. Econ. Stud. 21, 75–78 (1939)Google Scholar
  18. 18.
    Samuelson, P.A.: A synthesis of the principle of acceleration and the multiplier. J. Polit. Econ. 47, 786–797 (1939) CrossRefGoogle Scholar
  19. 19.
    Shinasi, G.J.: A nonlinear dynamic model of short run fluctuations. Rev. Econ. Stud. 48, 649–656 (1981) Google Scholar
  20. 20.
    Stromberg, K.R.: An Introduction to Classical Real Analysis. American Mathematical Society, Providence (1981) Google Scholar
  21. 21.
    Takagi, T.: Kaiseki Gairon (Treatise on Analysis), 3rd edn. Iwanami Shoten, Tokyo (1961) (Originally published in Japanese) Google Scholar
  22. 22.
    Yamaguti, M: Hisenkei Gensho no Sugaku (Mathematics of Nonlinear Phenomena). Asakura Shoten, Tokyo (1972) (Originally published in Japanese) Google Scholar
  23. 23.
    Yasui, T.: Jireishindo to Keiki Junkan. In:Kinko-bunseki no Kihon Mondai. (Self-oscillations and trade cycles. In: Fundamental Problems in Equilibrium Analysis.) Iwanami Shoten, Tokyo (1965) (Originally published in Japanese) Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Toru Maruyama
    • 1
  1. 1.Professor EmeritusKeio UniversityTokyoJapan

Personalised recommendations