Synthesis and Characterization of Al2O3–Cr2O3-Based Ceramic Composites for Artificial Hip Joint

  • Chandramani Goswami
  • Amar PatnaikEmail author
  • I. K. Bhat
  • Tej Singh
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


The purpose of the present research work is to study the structural, mechanical and wear properties of artificial hip ceramic composites with varying proportion of aluminum and chromium oxide. The ceramic composites containing fixed amount of zirconium oxide, magnesium oxide, silicon nitride with varying amount of aluminum and chromium oxide were fabricated by using spark plasma sintering process and subsequently evaluated for structural (XRD, X-ray diffraction), elemental (EDS, energy-dispersive spectroscopy), mechanical (fracture toughness, elastic modulus and hardness) and wear properties. The results showed that aluminum and chromium oxide contents have a significant influence on the mechanical and wear properties of the fabricated ceramic composites. In particular, the composites containing 1.5 wt% chromium oxide and 70.5 wt% of aluminum oxide showed better mechanical properties with improved wear resistance. This result clearly indicates that the proposed ceramic materials may be a better alternative for artificial hip material.


Artificial hip material Ceramic composites Mechanical Wear 


  1. 1.
    Trindade, M.C.D., Lind, M., Sun, D., Schurman, D.J., Goodman, S.B., Smith, R.L.: In vitro reaction to orthopaedic biomaterials by macrophages and lymphocytes isolated from patients undergoing revision surgery. Biomaterials 22(3), 253–259 (2001)CrossRefGoogle Scholar
  2. 2.
    Hu, D., Tie, K., Yang, X., Tan, Y., Alaidaros, M., Chen, L.: Comparison of ceramic-on-ceramic to metal-on-polyethylene bearing surfaces in total hip arthroplasty: a meta-analysis of randomized controlled trials. J. Orthop. Surg. Res. 10, 22 (2015). Scholar
  3. 3.
    Mattei, L., Di Puccio, F., Piccigallo, B., Ciulli, E.: Lubrication and wear modelling of artificial hip joints: a review. Tribol. Int. 44, 532–549 (2011)CrossRefGoogle Scholar
  4. 4.
    Skinner J.A., Haddad F.S.: Ceramics in total hip arthroplasty: a bearing solution?. Bone Joint J. 99-B(8), 993–995 (2017)CrossRefGoogle Scholar
  5. 5.
    Yoshitoshi, H., Yukiharu, H., Taisuke, S., Daigo, K., Naoki, I.: Significantly lower wear of ceramic-on-ceramic bearings than metal-on-highly cross-linked polyethylene bearings: A 10- to 14-year follow-up study. J. Arthroplast. 31(6), 1246–1250 (2016)CrossRefGoogle Scholar
  6. 6.
    Vendittoli, P.A., Amzica, T., Roy, A.G., Lusignan, D., Girard, J., Lavigne, M.: Metal ion release with large-diameter metal-on-metal hip arthroplasty. J. Arthroplast. 26(2), 282–288 (2011)CrossRefGoogle Scholar
  7. 7.
    Smeekes, C., Ongkiehong, B., Van der Wal, B., Wolterbeek, R., Henseler, J.F., Nelissen, R.: Large fixed-size metal-on-metal total hip arthroplasty: higher serum metal ion levels in patients with pain. Int. Orthop. 39(4), 631–638 (2015)CrossRefGoogle Scholar
  8. 8.
    Bizot, P., Nizard, R., Lerouge, S., Prudhommeaux, F., Sedel, L.: Ceramic/ceramic total hip arthroplasty. J. Orthop. Sci. 5, 622–627 (2000)CrossRefGoogle Scholar
  9. 9.
    Rahman, H.S.A., Choudhury, D., Osman, N.A.A., Shasmin, H.N., Abas, W.A.B.W.: In vivo and in vitro outcomes of alumina, zirconia and their composited ceramic-on-ceramic hip joints. J. Ceram. Soc. Jpn. 121(4), 382–387 (2013)CrossRefGoogle Scholar
  10. 10.
    Bahraminasab, M., Sahari, B.B., Edwards, K.L., Farahmand, F., Arumugam, M., Hong, T.S.: Aseptic loosening of femoral components—a review of current and future trends in materials used. Mater. Des. 42, 459–470 (2012)CrossRefGoogle Scholar
  11. 11.
    Silva, C.C.G.E., Higa, O.Z., Bressiani, J.C.: Cytotoxic evaluation of silicon nitride-based ceramics. Mater. Sci. Eng., C 24, 643–646 (2004)CrossRefGoogle Scholar
  12. 12.
    Bal, B.S., Khandkar, A., Lakshminarayanan, R., Clarke, I., Hoffman, A.A., Rahaman, M.N.: Fabrication and testing of silicon nitride bearings in total hip arthroplasty. J. Arthroplast. 24(1) (2009)CrossRefGoogle Scholar
  13. 13.
    Nevelos, J.E., Prudhommeaux, F., Doyle, M., Hamadouche, C., Ingham, E., Meunier, A., Nevelos, A.B., Sedel, L., Fisher, J.: Comparative analysis of two different types of alumina-alumina hip prosthesis retrieved for aseptic loosening. J. Bone Joint Surg. (Br) 83-B, 598–603 (2011)CrossRefGoogle Scholar
  14. 14.
    Jenabzadeh, A.R., Pearce, S.J., Walter, W.L.: Total hip replacement: ceramic-on-ceramic. Semin. Arthroplast. 23(4), 232–240 (2012)CrossRefGoogle Scholar
  15. 15.
    Anstis, G.R., Chantikul, P., Lawn, B.R., Marshall, D.B.: A critical evaluation of indentation techniques for measuring fracture toughness: I. Direct crack measurements. J. Am. Ceram. Soc. 64(9), 533–538 (1981)CrossRefGoogle Scholar
  16. 16.
    International Standards, ISO-6474-2-2012 (en): Implants for surgery Ceramic materials -Part 2: Composite materials based on a high-purity alumina matrix with zirconia reinforcement. 04 (2012)Google Scholar
  17. 17.
    International Standards, ISO-23317: Implants for Surgery-In Vitro Evaluation for Apatite-Forming Ability of Implant Materials, 1st edn (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Chandramani Goswami
    • 1
  • Amar Patnaik
    • 1
    Email author
  • I. K. Bhat
    • 2
  • Tej Singh
    • 3
  1. 1.Department of Mechanical EngineeringMNITJaipurIndia
  2. 2.Applied Mechanics DepartmentMNNITAllahabadIndia
  3. 3.Department of Mechanical EngineeringManav Bharti UniversitySolanIndia

Personalised recommendations