Morphology and Spectroscopy of Polymer–Carbon Composites

  • Purabi BhagabatiEmail author
  • Mostafizur Rahaman
  • Dipak Khastgir
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Over several decades, polymer/carbon filler composites have been serving the human society through technological prospects to the greater dimension. While carbon-based fillers like low-cost carbon black have emerged as the most functional and effective additive in elastomers; similarly, carbon fillers in nanometric range (e.g., carbon nanotube, graphene, etc.) are capable of escalating electrical and thermal conductivity of insulating polymer matrices. However, in all such cases, the morphology of these carbon fillers in polymer matrix and existence of any chemical or physical interaction between these fillers and polymer matrix dictates the overall composite properties. This book chapter discusses the importance and role of morphology and spectroscopic analysis of carbon fillers on the properties of polymer composites. Also, a detailed understanding on different types of carbon fillers, its morphological aspects, and its nature of interaction with various polymer matrices are thoroughly covered.


Carbon filler Morphology Spectroscopy Polymer composites Polymer–filler interaction 


  1. 1.
    Medalia AI, Heckman FA (1969) Morphology of aggregates—II. Size and shape factors of carbon black aggregates from electron microscopy. Carbon 7:567–582CrossRefGoogle Scholar
  2. 2.
    Ma PC, Kim JK (2011) Carbon nanotubes for polymer reinforcement. Taylor & FrancisGoogle Scholar
  3. 3.
    Boonstra BB, Medalia AI (1963) Effect of carbon black dispersion on the mechanical properties of rubber vulcanizates. Rubber Chem Technol 36:115–142CrossRefGoogle Scholar
  4. 4.
    Zhang C, Yi XS, Yui H, Asai S, Sumita M (1998) Selective location and double percolation of short carbon fiber filled polymer blends: high-density polyethylene/isotactic polypropylene. Mater Lett 36:186–190CrossRefGoogle Scholar
  5. 5.
    Sumita M, Sakata K, Hayakawa Y, Asai S, Miyasaka K, Tanemura M (1992) Double percolation effect on the electrical conductivity of conductive particles filled polymer blends. Colloid Polym Sci 270:134–139CrossRefGoogle Scholar
  6. 6.
    Sumita M, Takenaka K, Asai S (1995) Characterization of dispersion and percolation of filled polymers: molding time and temperature dependence of percolation time in carbon black filled low density polyethylene. Compos Interfaces 3:253–262CrossRefGoogle Scholar
  7. 7.
    Park SJ, Kim JS (2000) Role of chemically modified carbon black surfaces in enhancing interfacial adhesion between carbon black and rubber in a composite system. J Colloid Interface Sci 232:311–316PubMedCrossRefGoogle Scholar
  8. 8.
    Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Wong YK, Tang BZ, Hong SH, Paik KW, Kim JK (2009) Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. ACS Appl Mater Interfaces 1:1090–1096PubMedCrossRefGoogle Scholar
  9. 9.
    Sumita M, Sakata K, Asai S, Miyasaka K, Nakagawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271CrossRefGoogle Scholar
  10. 10.
    Al-Mosawi Ali I, Al-Maamori Mohammad H, Al-Mayalee Khalidah H (2013) Spectroscopic studies of polyester-carbon black composites. Res J Mater Sci 2320:6055Google Scholar
  11. 11.
    Han D, Meng Z, Wu D, Zhang C, Zhu H (2011) Thermal properties of carbon black aqueous nanofluids for solar absorption. Nanoscale Res Lett 6:457PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Endo M, Kim YA, Hayashi T, Fukai Y, Oshida K, Terrones M, Yanagisawa T, Higaki S, Dresselhaus MS (2002) Structural characterization of cup-stacked-type nanofibers with an entirely hollow core. Appl Phys Lett 80:1267–1269CrossRefGoogle Scholar
  13. 13.
    Endo M, Kim YA, Ezaka M, Osada K, Yanagisawa T, Hayashi T, Terrones M, Dresselhaus MS (2003) Selective and efficient impregnation of metal nanoparticles on cup-stacked-type carbon nanofibers. Nano Lett 3:723–726CrossRefGoogle Scholar
  14. 14.
    Baek JB, Lyons CB, Tan LS (2004) Grafting of vapor-grown carbon nanofibers via in-situ polycondensation of 3-phenoxybenzoic acid in poly (phosphoric acid). Macromolecules 37:8278–8285CrossRefGoogle Scholar
  15. 15.
    Arlen MJ, Wang D, Jacobs JD, Justice R, Trionfi A, Hsu JW, Schaffer D, Tan LS, Vaia RA (2008) Thermal–electrical character of in situ synthesized polyimide-grafted carbon nanofiber composites. Macromolecules 41(21):8053–8062CrossRefGoogle Scholar
  16. 16.
    Chung DD, Chung D (2012) Carbon fiber composites. Butterworth-HeinemannGoogle Scholar
  17. 17.
    Chirila V, Marginean G, Iclanzan T, Merino C, Brandl W (2007) Method for modifying mechanical properties of carbon nano-fiber polymeric composites. J Thermoplast Compos Mater 20:277–289CrossRefGoogle Scholar
  18. 18.
    Brandl W, Marginean G, Chirila V, Warschewski W (2004) Production and characterisation of vapour grown carbon fiber/polypropylene composites. Carbon 42:5–9CrossRefGoogle Scholar
  19. 19.
    Finegan IC, Tibbetts GG, Glasgow DG, Ting JM, Lake ML (2003) Surface treatments for improving the mechanical properties of carbon nanofiber/thermoplastic composites. J Mater Sci 38:3485–3490CrossRefGoogle Scholar
  20. 20.
    Gordeyev SA, Ferreira JA, Bernardo CA, Ward IM (2001) A promising conductive material: highly oriented polypropylene filled with short vapour-grown carbon fibres. Mater Lett 51:32–36CrossRefGoogle Scholar
  21. 21.
    Lim CS, Rodriguez AJ, Guzman ME, Schaefer JD, Minaie B (2011) Processing and properties of polymer composites containing aligned functionalized carbon nanofibers. Carbon 49:1873–1883CrossRefGoogle Scholar
  22. 22.
    Nie Y, Hübert T (2012) Surface modification of carbon nanofibers by glycidoxysilane for altering the conductive and mechanical properties of epoxy composites. Compos A 43:1357–1364CrossRefGoogle Scholar
  23. 23.
    Werner P, Altstädt V, Jaskulka R, Jacobs O, Sandler JK, Shaffer MS, Windle AH (2004) Tribological behaviour of carbon-nanofibre-reinforced poly (ether ether ketone). Wear 257:1006–1014CrossRefGoogle Scholar
  24. 24.
    Sandler J, Werner P, Shaffer MS, Demchuk V, Altstädt V, Windle AH (2002) Carbon-nanofibre-reinforced poly (ether ether ketone) composites. Compos A 33:1033–1039CrossRefGoogle Scholar
  25. 25.
    Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41:889–893CrossRefGoogle Scholar
  26. 26.
    Manea F, Motoc S, Pop A, Remes A, Schoonman J (2012) Silver-functionalized carbon nanofiber composite electrodes for ibuprofen detection. Nanoscale Res Lett 7:1–4CrossRefGoogle Scholar
  27. 27.
    Min C, Shen X, Shi Z, Chen L, Xu Z (2010) The electrical properties and conducting mechanisms of carbon nanotube/polymer nanocomposites: a review. Polym Plast Technol Eng 49:1172–1181CrossRefGoogle Scholar
  28. 28.
    Maity A, Ray SS, Pillai SK (2007) Morphology and electrical conductivity of poly(N-vinylcarbazole)/carbon nanotubes nanocomposite synthesized by solid state polymerization. Macromol Rapid Commun 28:2224–2229CrossRefGoogle Scholar
  29. 29.
    Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35:1096–1104PubMedCrossRefGoogle Scholar
  30. 30.
    Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37CrossRefGoogle Scholar
  32. 32.
    Kim JA, Seong DG, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44:1898–1905CrossRefGoogle Scholar
  33. 33.
    Ma PC, Kim JK, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232–3238CrossRefGoogle Scholar
  34. 34.
    Yuan JM, Fan ZF, Chen XH, Chen XH, Wu ZJ, He LP (2009) Preparation of polystyrene–multiwalled carbon nanotube composites with individual-dispersed nanotubes and strong interfacial adhesion. Polymer 50:3285–3291CrossRefGoogle Scholar
  35. 35.
    Zainal NFA, Azira AA, Nik SF, Rusop M (2009) The electrical and optical properties of PMMA/MWCNTs nanocomposite thin films. In: Rusop M, Soga T (eds) AIP conference proceedings, vol 1136, pp 750–754Google Scholar
  36. 36.
    Kymakis E, Alexandou I, Amaratunga GAJ (2002) Single-walled carbon nanotube–polymer composites: electrical, optical and structural investigation. Synth Met 127:59–62CrossRefGoogle Scholar
  37. 37.
    Liao SH, Hung CH, Ma CCM, Yen CY, Lin YF, Weng CC (2008) Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 176:175–182CrossRefGoogle Scholar
  38. 38.
    Liao SH, Yen CY, Weng CC, Lin YF, Ma CCM, Yang CH, Tsai MC, Yen MY, Hsiao MC, Lee SJ, Xie XF (2008) Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sources 185:1225–1232CrossRefGoogle Scholar
  39. 39.
    Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos A 34:689–694CrossRefGoogle Scholar
  40. 40.
    Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys 100:132–137CrossRefGoogle Scholar
  41. 41.
    Jung YJ, Kar S, Talapatra S, Soldano C, Viswanathan G, Li X, Yao Z, Ou FS, Avadhanula A, Vajtai R, Curran S (2006) Aligned carbon nanotube–polymer hybrid architectures for diverse flexible electronic applications. Nano Lett 6:413–418PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Gojny FH, Nastalczyk J, Roslaniec Z, Schulte K (2003) Surface modified multi-walled carbon nanotubes in CNT/epoxy-composites. Chem Phys Lett 370:820–824CrossRefGoogle Scholar
  43. 43.
    Ago H, Kugler T, Cacialli F, Salaneck WR, Shaffer MS, Windle AH, Friend RH (1999) Work functions and surface functional groups of multiwall carbon nanotubes. J Phys Chem B 103:8116–8121CrossRefGoogle Scholar
  44. 44.
    Liu T, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222CrossRefGoogle Scholar
  45. 45.
    Kanagaraj S, Varanda FR, Zhil’tsova TV, Oliveira MS, Simões JA (2007) Mechanical properties of high density polyethylene/carbon nanotube composites. Compos Sci Technol 67:3071–3077CrossRefGoogle Scholar
  46. 46.
    Huang H, Liu CH, Wu Y, Fan SH (2005) Aligned carbon nanotube composite films for thermal management. Adv Mater 17:1652–1656CrossRefGoogle Scholar
  47. 47.
    Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Thermal degradation and flammability properties of poly (propylene)/carbon nanotube composites. Macromol Rapid Commun 23:761–765CrossRefGoogle Scholar
  48. 48.
    Beyer G (2002) Improvements of the fire performance of nanocomposites. In: Thirteenth annual BCC conference on flame retardancy. Stamford, CTGoogle Scholar
  49. 49.
    Xiong J, Zheng Z, Qin X, Li M, Li H, Wang X (2006) The thermal and mechanical properties of a polyurethane/multi-walled carbon nanotube composite. Carbon 44:2701–2707CrossRefGoogle Scholar
  50. 50.
    Kashiwagi T, Grulke E, Hilding J, Groth K, Harris R, Butler K, Shields J, Kharchenko S, Douglas J (2004) Thermal and flammability properties of polypropylene/carbon nanotube nanocomposites. Polymer 45:4227–4239CrossRefGoogle Scholar
  51. 51.
    Krato H, Heath J, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162–163CrossRefGoogle Scholar
  52. 52.
    Sanz A, Wong HC, Nedoma AJ, Douglas JF, Cabral JT (2015) Influence of C60 fullerenes on the glass formation of polystyrene. Polymer 68:47–56CrossRefGoogle Scholar
  53. 53.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476PubMedCrossRefGoogle Scholar
  54. 54.
    Vinogradova LV, Melenevskaya EY, Khachaturov AS, Kever EE, Litvinova LS, Novokreshchenova AV, Sushko MA, Klenin SI, Zgonnik VN (1998) Water-soluble complexes of C60 fulleren with poly(N-vinylpyrrolidone). Polym Sci Ser B Polym Chem 40:1152–1159Google Scholar
  55. 55.
    Jurkowska B, Jurkowski B, Kamrowski P, Pesetskii SS, Koval VN, Pinchuk LS, Olkhov YA (2006) Properties of fullerene-containing natural rubber. J Appl Polym Sci 100:390–398CrossRefGoogle Scholar
  56. 56.
    Ginzburg BM, Tabarov SK, Tuichiev S, Shepelevskii AA (2007) Effect of C60 fullerene additives on the structure and mechanical properties of thin organic glass films. Tech Phys Lett 33:1007–1010CrossRefGoogle Scholar
  57. 57.
    Tuichiev S, Tabarov SK, Rashidov D, Shoimov U, Ginzburg BM (2008) Effect of C60 fullerene additives on the mechanical properties of low-density polyethylene films. Tech Phys Lett 34:56–57CrossRefGoogle Scholar
  58. 58.
    Chirvase D, Parisi J, Hummelen JC, Dyakonov V (2004) Influence of nanomorphology on the photovoltaic action of polymer–fullerene composites. Nanotechnology 15:1317CrossRefGoogle Scholar
  59. 59.
    Zeng HP, Wang T, Sandanayaka AS, Araki Y, Ito O (2005) Photoinduced charge separation and charge recombination in [60]fullerene–ethylcarbazole and [60]fullerene–triphenylamines in polar solvents. J Phys Chem A 109:4713–4720PubMedCrossRefGoogle Scholar
  60. 60.
    Hoppe H, Niggemann M, Winder C, Kraut J, Hiesgen R, Hinsch A, Meissner D, Sariciftci NS (2004) Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojunction solar cells. Adv Funct Mater 14:1005–1011CrossRefGoogle Scholar
  61. 61.
    Shaheen SE, Brabec CJ, Sariciftci NS, Padinger F, Fromherz T, Hummelen JC (2001) 2.5% efficient organic plastic solar cells. Appl Phys Lett 78:841–843CrossRefGoogle Scholar
  62. 62.
    Thompson BC, Fréchet JM (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47:58–77CrossRefGoogle Scholar
  63. 63.
    Şen F, Kahraman MV (2014) Thermal conductivity and properties of cyanate Ester/nanodiamond composites. Polym Adv Technol 25:1020–1026CrossRefGoogle Scholar
  64. 64.
    Kidalov SV, Shakhov FM, Vul AY (2008) Thermal conductivity of sintered nanodiamonds and microdiamonds. Diam Relat Mater 17:844–847CrossRefGoogle Scholar
  65. 65.
    Mochalin VN, Gogotsi Y (2015) Nanodiamond–polymer composites. Diam Relat Mater 58:161–171CrossRefGoogle Scholar
  66. 66.
    Zhang Y, Hu X, Zhao JH, Sheng K, Cannon WR, Wang X, Fursin L (2009) Rheology and thermal conductivity of diamond powder-filled liquid epoxy encapsulants for electronic packaging. IEEE Trans Compon Packag Technol 32:716–723CrossRefGoogle Scholar
  67. 67.
    Jee AY, Lee M (2011) Thermal and mechanical properties of alkyl-functionalized nanodiamond composites. Curr Appl Phys 11:1183–1187CrossRefGoogle Scholar
  68. 68.
    Zubrowska A, Masirek R, Piorkowska E, Pietrzak L (2015) Structure, thermal and mechanical properties of polypropylene composites with nano-and micro-diamonds. Polimery 60:331–336CrossRefGoogle Scholar
  69. 69.
    Dubrovinskaia N, Dub S, Dubrovinsky L (2006) Superior wear resistance of aggregated diamond nanorods. Nano Lett 6:824–826PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Li L, Davidson JL, Lukehart CM (2006) Surface functionalization of nanodiamond particles via atom transfer radical polymerization. Carbon 44:2308–2315CrossRefGoogle Scholar
  71. 71.
    Liu Y, Gu Z, Margrave JL, Khabashesku VN (2004) Functionalization of nanoscale diamond powder: fluoro-, alkyl-, amino-, and amino acid-nanodiamond derivatives. Chem Mater 16:3924–3930CrossRefGoogle Scholar
  72. 72.
    Schreiner PR, Fokina NA, Tkachenko BA, Hausmann H, Serafin M, Dahl JE, Liu S, Carlson RM, Fokin AA (2006) Functionalized nanodiamonds: triamantane and tetramantane. J Org Chem 71:6709–6720PubMedCrossRefGoogle Scholar
  73. 73.
    Liu Y, Khabashesku VN, Halas NJ (2005) Fluorinated nanodiamond as a wet chemistry precursor for diamond coatings covalently bonded to glass surface. J Am Chem Soc 127:3712–3713PubMedCrossRefGoogle Scholar
  74. 74.
    Yang JH, Song KS, Zhang GJ, Degawa M, Sasaki Y, Ohdomari I, Kawarada H (2006) Characterization of DNA hybridization on partially aminated diamond by aromatic compounds. Langmuir 22:11245–11250PubMedCrossRefGoogle Scholar
  75. 75.
    Dolmatov VY (2001) Detonation synthesis ultradispersed diamonds: properties and applications. Russ Chem Rev 70:607–626CrossRefGoogle Scholar
  76. 76.
    Zhang Q, Naito K, Tanaka Y, Kagawa Y (2007) Polyimide/diamond nanocomposites: microstructure and indentation behavior. Macromol Rapid Commun 28:2069–2073CrossRefGoogle Scholar
  77. 77.
    Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Nanodiamond and onion-like carbon polymer nanocomposites. Diam Relat Mater 16:1213–1217CrossRefGoogle Scholar
  78. 78.
    Zhang Q, Naito K, Tanaka Y, Kagawa Y (2008) Grafting polyimides from nanodiamonds. Macromolecules 41:536–538CrossRefGoogle Scholar
  79. 79.
    Kalsoom U, Peristyy A, Nesterenko PN, Paull B (2016) A 3D printable diamond polymer composite: a novel material for fabrication of low cost thermally conducting devices. RSC Adv 6:38140–38147CrossRefGoogle Scholar
  80. 80.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191PubMedCrossRefGoogle Scholar
  81. 81.
    Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK (2008) Graphene-based liquid crystal device. Nano Lett 8:1704–1708PubMedCrossRefGoogle Scholar
  82. 82.
    Miranda R, Vázquez de Parga AL (2009) Graphene: surfing ripples towards new devices. Nat Nanotechnol 4:549–550PubMedCrossRefGoogle Scholar
  83. 83.
    Ramanathan T, Abdala AA, Stankovich S, Dikin DA, Herrera-Alonso M, Piner RD, Adamson DH, Schniepp HC, Chen XRRS, Ruoff RS, Nguyen ST (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3:327–331CrossRefGoogle Scholar
  84. 84.
    Lee YR, Raghu AV, Jeong HM, Kim BK (2009) Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol Chem Phys 210:1247–1254 CrossRefGoogle Scholar
  85. 85.
    Yamaguchi H, Eda G, Mattevi C, Kim H, Chhowalla M (2010) Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. ACS Nano 4:524–528PubMedCrossRefGoogle Scholar
  86. 86.
    Quan H, Zhang BQ, Zhao Q, Yuen RK, Li RK (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos A 40:1506–1513CrossRefGoogle Scholar
  87. 87.
    Yuen SM, Ma CCM, Chiang CL, Chang JA, Huang SW, Chen SC, Chuang CY, Yang CC, Wei MH (2007) Silane-modified MWCNT/PMMA composites–preparation, electrical resistivity, thermal conductivity and thermal stability. Compos A 38:2527–2535CrossRefGoogle Scholar
  88. 88.
    Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2:463–470PubMedCrossRefGoogle Scholar
  89. 89.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19:2297–2302CrossRefGoogle Scholar
  90. 90.
    Chen G, Weng W, Wu D, Wu C (2003) PMMA/graphite nanosheets composite and its conducting properties. Eur Polym J 39:2329–2335CrossRefGoogle Scholar
  91. 91.
    Jović N, Dudić D, Montone A, Antisari MV, Mitrić M, Djoković V (2008) Temperature dependence of the electrical conductivity of epoxy/expanded graphite nanosheet composites. Scr Mater 58:846–849CrossRefGoogle Scholar
  92. 92.
    Mu Q, Feng S (2007) Thermal conductivity of graphite/silicone rubber prepared by solution intercalation. Thermochim Acta 462:70–75CrossRefGoogle Scholar
  93. 93.
    Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42:2929–2937Google Scholar
  94. 94.
    Yang X, Li L, Shang S, Tao XM (2010) Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites. Polymer 51:3431–3435CrossRefGoogle Scholar
  95. 95.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22(11):3441–3450CrossRefGoogle Scholar
  96. 96.
    Raghu AV, Lee YR, Jeong HM, Shin CM (2008) Preparation and physical properties of waterborne polyurethane/functionalized graphene sheet nanocomposites. Macromol Chem Phys 209:2487–2493CrossRefGoogle Scholar
  97. 97.
    Hontoria-Lucas C, Lopez-Peinado AJ, López-González JDD, Rojas-Cervantes ML, Martin-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592CrossRefGoogle Scholar
  98. 98.
    Nguyen DA, Lee YR, Raghu AV, Jeong HM, Shin CM, Kim BK (2009) Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym Int 58:412–417CrossRefGoogle Scholar
  99. 99.
    Shin HJ, Kim KK, Benayad A, Yoon SM, Park HK, Jung IS, Jin MH, Jeong HK, Kim JM, Choi JY, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992CrossRefGoogle Scholar
  100. 100.
    Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253CrossRefGoogle Scholar
  101. 101.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRefGoogle Scholar
  102. 102.
    Kim H, Macosko CW (2008) Morphology and properties of polyester/exfoliated graphite nanocomposites. Macromolecules 41:3317–3327CrossRefGoogle Scholar
  103. 103.
    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRefGoogle Scholar
  104. 104.
    Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Scarpa F, Adhikari S, Phani AS (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnol 20:065709CrossRefGoogle Scholar
  106. 106.
    Chrissafis K, Paraskevopoulos KM, Pavlidou E, Bikiaris D (2009) Thermal degradation mechanism of HDPE nanocomposites containing fumed silica nanoparticles. Thermochim Acta 485:65–71CrossRefGoogle Scholar
  107. 107.
    Woo MW, Wong P, Tang Y, Triacca V, Gloor PE, Hrymak AN, Hamielec AE (1995) Melting behavior and thermal properties of high density polythylene. Polym Eng Sci 35:151–156CrossRefGoogle Scholar
  108. 108.
    Ventura G, Martelli V (2009) Thermal conductivity of Kevlar 49 between 7 and 290K. Cryogenics 49:735–737CrossRefGoogle Scholar
  109. 109.
    Sun Y, Luo Y, Jia D (2008) Preparation and properties of natural rubber nanocomposites with solid-state organomodified montmorillonite. J Appl Polym Sci 107:2786–2792CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Purabi Bhagabati
    • 1
    Email author
  • Mostafizur Rahaman
    • 2
  • Dipak Khastgir
    • 3
  1. 1.Chemical Engineering DepartmentIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Rubber Technology Centre, Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations