Advertisement

Thermal Properties of Polymer–Carbon Nanocomposites

  • Ayippadath Gopi Jineesh
  • Sunita Mohapatra
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Carbon-based nanomaterials are widely used in polymer nanocomposites with enhanced properties. The dispersion of carbon nanomaterials and their interaction with the polymer can be improved by the surface functionalization of the carbon nanofillers, optimum processing conditions, and the methods of preparation of nanocomposites. Carbon nanofillers such as carbon nanotube (CNT), graphene, fullerene, and carbon nanofiber (CNF) can influence the thermal stability of the polymer matrix due to several mechanisms acting between the carbonaceous fillers and the basic polymer matrix. Optimum loading of carbon nanomaterials and proper interactions at the interphase between polymer and fillers can increase the thermal stability to a greater extent. Carbon nanomaterials can also impart changes in glass transition temperatures, crystallization temperatures as well as the extent of crystallinity of the polymer phase in the composites.

Keywords

Carbon nanotube Graphene Carbon nanofiber Fullerene Nanocomposites Thermal properties 

Notes

Acknowledgements

The author acknowledge the support of MS Ramaiah University of Applied Sciences, Bangalore

References

  1. 1.
    Manias E, Touny A, Wu L, Strawhecker K, Lu B, Chung T (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater 13(10):3516–3523CrossRefGoogle Scholar
  2. 2.
    Pavlidou S, Papaspyrides C (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198CrossRefGoogle Scholar
  3. 3.
    Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng, A 393(1):1–11CrossRefGoogle Scholar
  4. 4.
    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 5(6):927–931PubMedCrossRefGoogle Scholar
  5. 5.
    Sullivan J, Friedmann T, Hjort K (2001) Diamond and amorphous carbon MEMS. MRS Bull 26(04):309–311CrossRefGoogle Scholar
  6. 6.
    Chiang K, Yang L, Wei R, Coulter K (2008) Development of diamond-like carbon-coated electrodes for corrosion sensor applications at high temperatures. Thin Solid Films 517(3):1120–1124CrossRefGoogle Scholar
  7. 7.
    Roy N, Sengupta R, Bhowmick AK (2012) Modifications of carbon for polymer composites and nanocomposites. Prog Polym Sci 37(6):781–819CrossRefGoogle Scholar
  8. 8.
    Dasari A, Yu Z-Z, Mai Y-W (2016) Polymer nanocomposites: towards multi-functionality. SpringerGoogle Scholar
  9. 9.
    Crompton TR (2006) Polymer reference book. Rapra Technology Limited, UKGoogle Scholar
  10. 10.
    Crompton TR (1993) Types of polymers and their uses. Practical polymer analysis. Springer, US, Boston, MA, pp 1–9.  https://doi.org/10.1007/978-1-4615-2874-6_1CrossRefGoogle Scholar
  11. 11.
    Bourbigot S, Gilman JW, Wilkie CA (2004) Kinetic analysis of the thermal degradation of polystyrene–montmorillonite nanocomposite. Polym Degrad Stab 84(3):483–492CrossRefGoogle Scholar
  12. 12.
    Jang BN, Wilkie CA (2005) The thermal degradation of polystyrene nanocomposite. Polymer 46(9):2933–2942CrossRefGoogle Scholar
  13. 13.
    Chrissafis K, Paraskevopoulos K, Jannakoudakis A, Beslikas T, Bikiaris D (2010) Oxidized multiwalled carbon nanotubes as effective reinforcement and thermal stability agents of poly (lactic acid) ligaments. J Appl Polym Sci 118(5):2712–2721CrossRefGoogle Scholar
  14. 14.
    Liu H, Pa Song, Fang Z, Shen L, Peng M (2010) Thermal degradation and flammability properties of HDPE/EVA/C 60 nanocomposites. Thermochim Acta 506(1):98–101CrossRefGoogle Scholar
  15. 15.
    Zhu J, Uhl FM, Morgan AB, Wilkie CA (2001) Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater 13(12):4649–4654CrossRefGoogle Scholar
  16. 16.
    Qin H, Zhang S, Zhao C, Feng M, Yang M, Shu Z, Yang S (2004) Thermal stability and flammability of polypropylene/montmorillonite composites. Polym Degrad Stab 85(2):807–813CrossRefGoogle Scholar
  17. 17.
    Zanetti M, Camino G, Reichert P, Mülhaupt R (2001) Thermal behaviour of poly (propylene) layered silicate nanocomposites. Macromol Rapid Commun 22(3):176–180CrossRefGoogle Scholar
  18. 18.
    Kropka JM, Pryamitsyn V, Ganesan V (2008) Relation between glass transition temperatures in polymer nanocomposites and polymer thin films. Phys Rev Lett 101(7):075702PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Ayippadath Gopi J, Patel S, Chandra A, Tripathy D (2011) SBR-clay-carbon black hybrid nanocomposites for tire tread application. J Polym Res 18(6):1625–1634.  https://doi.org/10.1007/s10965-011-9567-9CrossRefGoogle Scholar
  20. 20.
    Begtrup GE, Ray KG, Kessler BM, Yuzvinsky TD, Garcia H, Zettl A (2007) Probing nanoscale solids at thermal extremes. Phys Rev Lett 99(15):155901PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Rittigstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6(4):278–282PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Ramanathan T, Stankovich S, Dikin D, Liu H, Shen H, Nguyen S, Brinson L (2007) Graphitic nanofillers in PMMA nanocomposites—an investigation of particle size and dispersion and their influence on nanocomposite properties. J Polym Sci, Part B: Polym Phys 45(15):2097–2112CrossRefGoogle Scholar
  23. 23.
    Sun Y, Zhang Z, Moon KS, Wong C (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci, Part B: Polym Phys 42(21):3849–3858CrossRefGoogle Scholar
  24. 24.
    Ash B, Schadler L, Siegel R (2002) Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater Lett 55(1):83–87CrossRefGoogle Scholar
  25. 25.
    Starr FW, Schroder T, Glotzer SC (2002) Molecular dynamics simulation of a polymer melt with a nanoscopic particle. Macromolecules 35:4481CrossRefGoogle Scholar
  26. 26.
    van Zanten JH, Wallace WE, W-l Wu (1996) Effect of strongly favorable substrate interactions on the thermal properties of ultrathin polymer films. Phys Rev E 53(3):R2053CrossRefGoogle Scholar
  27. 27.
    Rittigstein P, Torkelson JM (2006) Polymer–nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci, Part B: Polym Phys 44(20):2935–2943.  https://doi.org/10.1002/polb.20925CrossRefGoogle Scholar
  28. 28.
    Qiao R, Deng H, Putz KW, Brinson LC (2011) Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. J Polym Sci, Part B: Polym Phys 49(10):740–748CrossRefGoogle Scholar
  29. 29.
    Gopi JA, Patel SK, Tripathy DK, Chandra AK (2016) Development of cooler running PCR tire tread using SBR–ENR–nano clay composite. Int J Plast Technol 20(2):345–363CrossRefGoogle Scholar
  30. 30.
    Jog J (2006) Crystallisation in polymer nanocomposites. Mater Sci Technol 22(7):797–806CrossRefGoogle Scholar
  31. 31.
    Avrami M (1939) Kinetics of phase change. I general theory. J Chem Phys 7(12):1103–1112.  https://doi.org/10.1063/1.1750380CrossRefGoogle Scholar
  32. 32.
    Avrami M (1940) Kinetics of phase change. II transformation-time relations for random distribution of nuclei. J Chem Phys 8(2):212–224.  https://doi.org/10.1063/1.1750631CrossRefGoogle Scholar
  33. 33.
    Ozawa T (1971) Kinetics of non-isothermal crystallization. Polymer 12(3):150–158.  https://doi.org/10.1016/0032-3861(71)90041-3CrossRefGoogle Scholar
  34. 34.
    Kissinger HE (1956) Variation of peak temperature with heating rate in differential thermal analysis. J Res Natl Bur Stan 57(4):217–221CrossRefGoogle Scholar
  35. 35.
    Grady BP, Pompeo F, Shambaugh RL, Resasco DE (2002) Nucleation of polypropylene crystallization by single-walled carbon nanotubes. J Phys Chem B 106(23):5852–5858CrossRefGoogle Scholar
  36. 36.
    Manafi P, Ghasemi I, Karrabi M, Azizi H, Ehsaninamin P (2014) Effect of graphene nanoplatelets on crystallization kinetics of poly (lactic acid). Soft Mater 12(4):433–444CrossRefGoogle Scholar
  37. 37.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  38. 38.
    Lu K, Grossiord N, Koning CE, Miltner HE, Bv Mele, Loos J (2008) Carbon nanotube/isotactic polypropylene composites prepared by latex technology: morphology analysis of CNT-induced nucleation. Macromolecules 41(21):8081–8085CrossRefGoogle Scholar
  39. 39.
    Cheng S, Chen X, Hsuan YG, Li CY (2011) Reduced graphene oxide-induced polyethylene crystallization in solution and nanocomposites. Macromolecules 45(2):993–1000CrossRefGoogle Scholar
  40. 40.
    Yang J, Wang C, Wang K, Zhang Q, Chen F, Du R, Fu Q (2009) Direct formation of nanohybrid shish-kebab in the injection molded bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 42(18):7016–7023CrossRefGoogle Scholar
  41. 41.
    Li CY, Li L, Cai W, Kodjie SL, Tenneti KK (2005) Nanohybrid shish-kebabs: periodically functionalized carbon nanotubes. Adv Mater 17(9):1198–1202CrossRefGoogle Scholar
  42. 42.
    Li L, Li CY, Ni C, Rong L, Hsiao B (2007) Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents. Polymer 48(12):3452–3460CrossRefGoogle Scholar
  43. 43.
    Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867CrossRefGoogle Scholar
  44. 44.
    Chrissafis K, Bikiaris D (2011) Can nanoparticles really enhance thermal stability of polymers? Part I: an overview on thermal decomposition of addition polymers. Thermochim Acta 523(1):1–24CrossRefGoogle Scholar
  45. 45.
    Dillon AC, Jones K, Bekkedahl T, Kiang C (1997) Storage of hydrogen in single-walled carbon nanotubes. Nature 386(6623):377CrossRefGoogle Scholar
  46. 46.
    Liu C, Fan Y, Liu M, Cong H, Cheng H, Dresselhaus MS (1999) Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 286(5442):1127–1129PubMedCrossRefGoogle Scholar
  47. 47.
    Ly SY (2006) Detection of dopamine in the pharmacy with a carbon nanotube paste electrode using voltammetry. Bioelectrochemistry 68(2):227–231PubMedCrossRefGoogle Scholar
  48. 48.
    Minot ED, Janssens AM, Heller I, Heering HA, Dekker C, Lemay SG (2007) Carbon nanotube biosensors: the critical role of the reference electrode. Appl Phys Lett 91(9):093507CrossRefGoogle Scholar
  49. 49.
    Liu H, Liu Z, Liu J (2006) Investigations on stability of single-walled carbon nanotubes. J Synth Cryst 35(3):494Google Scholar
  50. 50.
    Xu F, Sun LX, Zhang J, Qi YN, Yang LN, Ru HY, Wang CY, Meng X, Lan XF, Jiao QZ, Huang FL (2010) Thermal stability of carbon nanotubes. J Therm Anal Calorim 102(2):785–791.  https://doi.org/10.1007/s10973-010-0793-xCrossRefGoogle Scholar
  51. 51.
    Chatterjee A, Deopura B (2006) Thermal stability of polypropylene/carbon nanofiber composite. J Appl Polym Sci 100(5):3574–3578CrossRefGoogle Scholar
  52. 52.
    Kashiwagi T, Grulke E, Hilding J, Harris R, Awad W, Douglas J (2002) Thermal degradation and flammability properties of poly (propylene)/carbon nanotube composites. Macromol Rapid Commun 23(13):761–765CrossRefGoogle Scholar
  53. 53.
    Bikiaris D, Vassiliou A, Chrissafis K, Paraskevopoulos K, Jannakoudakis A, Docoslis A (2008) Effect of acid treated multi-walled carbon nanotubes on the mechanical, permeability, thermal properties and thermo-oxidative stability of isotactic polypropylene. Polym Degrad Stab 93(5):952–967CrossRefGoogle Scholar
  54. 54.
    Marosfői B, Marosi GJ, Szep A, Anna P, Keszei S, Nagy B, Martvonova H, Sajo I (2006) Complex activity of clay and CNT particles in flame retarded EVA copolymer. Polym Adv Technol 17(4):255–262CrossRefGoogle Scholar
  55. 55.
    Bocchini S, Frache A, Camino G, Claes M (2007) Polyethylene thermal oxidative stabilisation in carbon nanotubes based nanocomposites. Eur Polymer J 43(8):3222–3235CrossRefGoogle Scholar
  56. 56.
    Davis RD, Gilman JW, VanderHart DL (2003) Processing degradation of polyamide 6/montmorillonite clay nanocomposites and clay organic modifier. Polym Degrad Stab 79(1):111–121CrossRefGoogle Scholar
  57. 57.
    Chipara M, Lozano K, Hernandez A, Chipara M (2008) TGA analysis of polypropylene–carbon nanofibers composites. Polym Degrad Stab 93(4):871–876CrossRefGoogle Scholar
  58. 58.
    Sarno M, Gorrasi G, Sannino D, Sorrentino A, Ciambelli P, Vittoria V (2004) Polymorphism and thermal behaviour of syndiotactic poly (propylene)/carbon nanotube composites. Macromol Rapid Commun 25(23):1963–1967CrossRefGoogle Scholar
  59. 59.
    Hirschler M (1984) Reduction of smoke formation from and flammability of thermoplastic polymers by metal oxides. Polymer 25(3):405–411CrossRefGoogle Scholar
  60. 60.
    Mai F, Habibi Y, Raquez J-M, Dubois P, Feller J-F, Peijs T, Bilotti E (2013) Poly (lactic acid)/carbon nanotube nanocomposites with integrated degradation sensing. Polymer 54(25):6818–6823CrossRefGoogle Scholar
  61. 61.
    Di Blasi C, Galgano A, Branca C (2013) Modeling the thermal degradation of poly (methyl methacrylate)/carbon nanotube nanocomposites. Polym Degrad Stab 98(1):266–275CrossRefGoogle Scholar
  62. 62.
    Chou W-J, Wang C-C, Chen C-Y (2008) Thermal behaviors of polyimide with plasma-modified carbon nanotubes. Polym Degrad Stab 93(3):745–752CrossRefGoogle Scholar
  63. 63.
    Chen X, Wang J, Lin M, Zhong W, Feng T, Chen X, Chen J, Xue F (2008) Mechanical and thermal properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes. Mater Sci Eng, A 492(1):236–242CrossRefGoogle Scholar
  64. 64.
    Hezma A, Elashmawi I, Abdelrazek E, Rajeh A, Kamal M (2017) Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes. Prog Nat Sci: Mater Int 27(3):338–343CrossRefGoogle Scholar
  65. 65.
    Breuer O, Sundararaj U (2004) Big returns from small fibers: a review of polymer/carbon nanotube composites. Polym Compos 25(6):630–645.  https://doi.org/10.1002/pc.20058CrossRefGoogle Scholar
  66. 66.
    Ma PC, Kim J-K, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67(14):2965–2972CrossRefGoogle Scholar
  67. 67.
    Barick AK, Tripathy DK (2011) Preparation, characterization and properties of acid functionalized multi-walled carbon nanotube reinforced thermoplastic polyurethane nanocomposites. Mater Sci Eng, B 176(18):1435–1447.  https://doi.org/10.1016/j.mseb.2011.08.001CrossRefGoogle Scholar
  68. 68.
    Zhou Y, Pervin F, Lewis L, Jeelani S (2007) Experimental study on the thermal and mechanical properties of multi-walled carbon nanotube-reinforced epoxy. Mater Sci Eng, A 452:657–664CrossRefGoogle Scholar
  69. 69.
    Ganguli S, Aglan H, Dennig P, Irvin G (2006) Effect of loading and surface modification of MWCNTs on the fracture behavior of epoxy nanocomposites. J Reinf Plast Compos 25(2):175–188CrossRefGoogle Scholar
  70. 70.
    Pham JQ, Mitchell CA, Bahr JL, Tour JM, Krishanamoorti R, Green PF (2003) Glass transition of polymer/single-walled carbon nanotube composite films. J Polym Sci, Part B: Polym Phys 41(24):3339–3345CrossRefGoogle Scholar
  71. 71.
    Wang S, Liang Z, Liu T, Wang B, Zhang C (2006) Effective amino-functionalization of carbon nanotubes for reinforcing epoxy polymer composites. Nanotechnology 17(6):1551PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Gojny FH, Schulte K (2004) Functionalisation effect on the thermo-mechanical behaviour of multi-wall carbon nanotube/epoxy-composites. Compos Sci Technol 64(15):2303–2308CrossRefGoogle Scholar
  73. 73.
    Sterzyński T, Tomaszewska J, Piszczek K, Skórczewska K (2010) The influence of carbon nanotubes on the PVC glass transition temperature. Compos Sci Technol 70(6):966–969CrossRefGoogle Scholar
  74. 74.
    Wei C, Srivastava D, Cho K (2004) Structural ordering in nanotube polymer composites. Nano Lett 4(10):1949–1952CrossRefGoogle Scholar
  75. 75.
    Mitchell CA, Bahr JL, Arepalli S, Tour JM, Krishnamoorti R (2002) Macromolecules 35:8825CrossRefGoogle Scholar
  76. 76.
    Arrigo R, Bellavia S, Gambarotti C, Dintcheva NT, Carroccio S (2017) Carbon nanotubes-based nanohybrids for multifunctional nanocomposites. J King Saud Univ-Sci 29(4):502–509CrossRefGoogle Scholar
  77. 77.
    Barrau S, Vanmansart C, Moreau M, Addad A, Stoclet G, Lefebvre J-M, Seguela R (2011) Crystallization behavior of carbon nanotube—polylactide nanocomposites. Macromolecules 44(16):6496–6502CrossRefGoogle Scholar
  78. 78.
    Haggenmueller R, Fischer JE, Winey KI (2006) Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules 39(8):2964–2971CrossRefGoogle Scholar
  79. 79.
    Bhattacharyya AR, Sreekumar T, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44(8):2373–2377CrossRefGoogle Scholar
  80. 80.
    Brosse A-C, Tencé-Girault S, Piccione PM, Leibler L (2008) Effect of multi-walled carbon nanotubes on the lamellae morphology of polyamide-6. Polymer 49(21):4680–4686CrossRefGoogle Scholar
  81. 81.
    Valentini L, Biagiotti J, Kenny JM, Santucci S (2003) Morphological characterization of single-walled carbon nanotubes-PP composites. Compos Sci Technol 63(8):1149–1153.  https://doi.org/10.1016/S0266-3538(03)00036-8CrossRefGoogle Scholar
  82. 82.
    Manchado MAL, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43(7):1499–1505.  https://doi.org/10.1016/j.carbon.2005.01.031CrossRefGoogle Scholar
  83. 83.
    Sarno M, Gorrasi G, Sannino D, Sorrentino A, Ciambelli P, Vittoria V (2004) Polymorphism and thermal behaviour of syndiotactic poly(propylene)/carbon nanotube composites. Macromol Rapid Commun 25(23):1963–1967.  https://doi.org/10.1002/marc.200400344CrossRefGoogle Scholar
  84. 84.
    Liu Phang IY, Shen L, Chow SY, Zhang W-D (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37(19):7214–7222.  https://doi.org/10.1021/ma049132tCrossRefGoogle Scholar
  85. 85.
    Yudin VE, Svetlichnyi VM, Shumakov AN, Letenko DG, Feldman AY, Marom G (2005) The nucleating effect of carbon nanotubes on crystallinity in R-BAPB-type thermoplastic polyimide. Macromol Rapid Commun 26(11):885–888.  https://doi.org/10.1002/marc.200500085CrossRefGoogle Scholar
  86. 86.
    Lai M, Li J, Yang J, Liu J, Tong X, Cheng H (2004) The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate-co-hydroxyvalerate) composite. Polym Int 53(10):1479–1484.  https://doi.org/10.1002/pi.1566CrossRefGoogle Scholar
  87. 87.
    Arjmand M, Chizari K, Krause B, Pötschke P, Sundararaj U (2016) Effect of synthesis catalyst on structure of nitrogen-doped carbon nanotubes and electrical conductivity and electromagnetic interference shielding of their polymeric nanocomposites. Carbon 98:358–372CrossRefGoogle Scholar
  88. 88.
    MacDonald AKGAH (2007) Graphene: exploring carbon flatland. Phys Today 60(8):35–41.  https://doi.org/10.1063/1.2774096CrossRefGoogle Scholar
  89. 89.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39(1):228–240.  https://doi.org/10.1039/B917103GCrossRefPubMedPubMedCentralGoogle Scholar
  91. 91.
    Wang G, Yang J, Park J, Gou X, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112(22):8192–8195.  https://doi.org/10.1021/jp710931hCrossRefGoogle Scholar
  92. 92.
    Blake P, Brimicombe PD, Nair RR, Booth TJ, Jiang D, Schedin F, Ponomarenko LA, Morozov SV, Gleeson HF, Hill EW, Geim AK, Novoselov KS (2008) Graphene-based liquid crystal device. Nano Lett 8(6):1704–1708.  https://doi.org/10.1021/nl080649iCrossRefGoogle Scholar
  93. 93.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669.  https://doi.org/10.1126/science.1102896CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196.  https://doi.org/10.1126/science.1125925CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Reina A, Jia X, Ho J, Nezich D, Son H, Bulovic V, Dresselhaus MS, Kong J (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9(1):30–35.  https://doi.org/10.1021/nl801827vCrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Wu Z-S, Ren W, Gao L, Liu B, Jiang C, Cheng H-M (2009) Synthesis of high-quality graphene with a pre-determined number of layers. Carbon 47(2):493–499.  https://doi.org/10.1016/j.carbon.2008.10.031CrossRefGoogle Scholar
  97. 97.
    Fu W, Kiggans J, Overbury SH, Schwartz V, Liang C (2011) Low-temperature exfoliation of multilayer-graphene material from FeCl3 and CH3NO2 co-intercalated graphite compound. Chem Commun 47(18):5265–5267.  https://doi.org/10.1039/C1CC10508FCrossRefGoogle Scholar
  98. 98.
    Allen MJ, Tung VC, Kaner RB (2010) Honeycomb carbon: a review of graphene. Chem Rev 110(1):132–145.  https://doi.org/10.1021/cr900070dCrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Shahil KMF, Balandin AA (2012) Thermal properties of graphene and multilayer graphene: applications in thermal interface materials. Solid State Commun 152(15):1331–1340.  https://doi.org/10.1016/j.ssc.2012.04.034CrossRefGoogle Scholar
  100. 100.
    Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD, Mishchenko A, Kim Y-J, Gorbachev RV, Georgiou T, Morozov SV, Grigorenko AN, Geim AK, Casiraghi C, Neto AHC, Novoselov KS (2013) Strong Light-matter interactions in heterostructures of atomically thin films. Science 340(6138):1311–1314.  https://doi.org/10.1126/science.1235547CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn J-H, Kim P, Choi J-Y, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457 (7230):706–710. doi:http://www.nature.com/nature/journal/v457/n7230/suppinfo/nature07719_S1.html
  102. 102.
    Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci, Part B: Polym Phys 47(9):888–897.  https://doi.org/10.1002/polb.21695CrossRefGoogle Scholar
  103. 103.
    RamanathanT, Abdala AA, StankovichS, Dikin DA, Herrera Alonso M, Piner RD, Adamson DH, Schniepp HC, ChenX, Ruoff RS, Nguyen ST, Aksay IA, Prud’Homme RK, Brinson LC (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nano 3(6):327–331. http://www.nature.com/nnano/journal/v3/n6/suppinfo/nnano.2008.96_S1.htmlPubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Xu Y, Wang Y, Liang J, Huang Y, Ma Y, Wan X, Chen Y (2009) A hybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2(4):343–348.  https://doi.org/10.1007/s12274-009-9032-9CrossRefGoogle Scholar
  105. 105.
    Quan H, B-q Zhang, Zhao Q, Yuen RKK, Li RKY (2009) Facile preparation and thermal degradation studies of graphite nanoplatelets (GNPs) filled thermoplastic polyurethane (TPU) nanocomposites. Compos A Appl Sci Manuf 40(9):1506–1513.  https://doi.org/10.1016/j.compositesa.2009.06.012CrossRefGoogle Scholar
  106. 106.
    Eda G, Chhowalla M (2009) Graphene-based composite thin films for electronics. Nano Lett 9(2):814–818.  https://doi.org/10.1021/nl8035367CrossRefPubMedPubMedCentralGoogle Scholar
  107. 107.
    Liang J, Xu Y, Huang Y, Zhang L, Wang Y, Ma Y, Li F, Guo T, Chen Y (2009) Infrared-triggered actuators from graphene-based nanocomposites. J Phys Chem C 113(22):9921–9927.  https://doi.org/10.1021/jp901284dCrossRefGoogle Scholar
  108. 108.
    Becerril HA, Mao J, Liu Z, Stoltenberg RM, Bao Z, Chen Y (2008) Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3):463–470.  https://doi.org/10.1021/nn700375nCrossRefGoogle Scholar
  109. 109.
    Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GHB, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448 (7152):457–460. http://www.nature.com/nature/journal/v448/n7152/suppinfo/nature06016_S1.htmlPubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Szabó T, Szeri A, Dékány I (2005) Composite graphitic nanolayers prepared by self-assembly between finely dispersed graphite oxide and a cationic polymer. Carbon 43(1):87–94.  https://doi.org/10.1016/j.carbon.2004.08.025CrossRefGoogle Scholar
  111. 111.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRefGoogle Scholar
  112. 112.
    Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39(4):749–780.  https://doi.org/10.1016/j.progpolymsci.2013.08.003CrossRefGoogle Scholar
  113. 113.
    Peigney A, Laurent C, Flahaut E, Bacsa RR, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39(4):507–514.  https://doi.org/10.1016/S0008-6223(00)00155-XCrossRefGoogle Scholar
  114. 114.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-Level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Func Mater 19(14):2297–2302.  https://doi.org/10.1002/adfm.200801776CrossRefGoogle Scholar
  115. 115.
    Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388.  https://doi.org/10.1126/science.1157996CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375.  https://doi.org/10.1016/j.progpolymsci.2010.07.005CrossRefGoogle Scholar
  117. 117.
    Kholmanov IN, Magnuson CW, Aliev AE, Li H, Zhang B, Suk JW, Zhang LL, Peng E, Mousavi SH, Khanikaev AB, Piner R, Shvets G, Ruoff RS (2012) Improved electrical conductivity of graphene films integrated with metal nanowires. Nano Lett 12(11):5679–5683.  https://doi.org/10.1021/nl302870xCrossRefPubMedGoogle Scholar
  118. 118.
    Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907.  https://doi.org/10.1021/nl0731872CrossRefPubMedGoogle Scholar
  119. 119.
    Du J, Cheng H-M (2012) The fabrication, properties, and uses of graphene/polymer composites. Macromol Chem Phys 213(10–11):1060–1077.  https://doi.org/10.1002/macp.201200029CrossRefGoogle Scholar
  120. 120.
    McAllister MJ, Li J-L, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud’homme RK, Aksay IA (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19(18):4396–4404.  https://doi.org/10.1021/cm0630800CrossRefGoogle Scholar
  121. 121.
    Niyogi S, Bekyarova E, Itkis ME, McWilliams JL, Hamon MA, Haddon RC (2006) solution properties of graphite and graphene. J Am Chem Soc 128(24):7720–7721.  https://doi.org/10.1021/ja060680rCrossRefPubMedPubMedCentralGoogle Scholar
  122. 122.
    Cano M, Khan U, Sainsbury T, O’Neill A, Wang Z, McGovern IT, Maser WK, Benito AM, Coleman JN (2013) Improving the mechanical properties of graphene oxide based materials by covalent attachment of polymer chains. Carbon 52:363–371.  https://doi.org/10.1016/j.carbon.2012.09.046CrossRefGoogle Scholar
  123. 123.
    Jiang T, Kuila T, Kim NH, Lee JH (2014) Effects of surface-modified silica nanoparticles attached graphene oxide using isocyanate-terminated flexible polymer chains on the mechanical properties of epoxy composites. J Mater Chem A 2(27):10557–10567.  https://doi.org/10.1039/C4TA00584HCrossRefGoogle Scholar
  124. 124.
    Sadasivuni KK, Ponnamma D, Kumar B, Strankowski M, Cardinaels R, Moldenaers P, Thomas S, Grohens Y (2014) Dielectric properties of modified graphene oxide filled polyurethane nanocomposites and its correlation with rheology. Compos Sci Technol 104:18–25.  https://doi.org/10.1016/j.compscitech.2014.08.025CrossRefGoogle Scholar
  125. 125.
    Samanta SK, Fritsch M, Scherf U, Gomulya W, Bisri SZ, Loi MA (2014) Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: the power of polymer wrapping. Acc Chem Res 47(8):2446–2456.  https://doi.org/10.1021/ar500141jCrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Ye W, Shi X, Su J, Chen Y, Fu J, Zhao X, Zhou F, Wang C, Xue D (2014) One-step reduction and functionalization protocol to synthesize polydopamine wrapping Ag/graphene hybrid for efficient oxidation of hydroquinone to benzoquinone. Appl Catal B 160–161:400–407.  https://doi.org/10.1016/j.apcatb.2014.05.042CrossRefGoogle Scholar
  127. 127.
    Fujigaya T, Nakashima N (2015) Non-covalent polymer wrapping of carbon nanotubes and the role of wrapped polymers as functional dispersants. Sci Technol Adv Mater 16(2):024802.  https://doi.org/10.1088/1468-6996/16/2/024802CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Func Mater 18(10):1518–1525.  https://doi.org/10.1002/adfm.200700797CrossRefGoogle Scholar
  129. 129.
    Kim TY, Lee HW, Stoller M, Dreyer DR, Bielawski CW, Ruoff RS, Suh KS (2011) High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano 5(1):436–442.  https://doi.org/10.1021/nn101968pCrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Yang H, Shan C, Li F, Han D, Zhang Q, Niu L (2009) Covalent functionalization of polydisperse chemically-converted graphene sheets with amine-terminated ionic liquid. Chem Commun 26:3880–3882.  https://doi.org/10.1039/B905085JCrossRefGoogle Scholar
  131. 131.
    Nuvoli D, Valentini L, Alzari V, Scognamillo S, Bon SB, Piccinini M, Illescas J, Mariani A (2011) High concentration few-layer graphene sheets obtained by liquid phase exfoliation of graphite in ionic liquid. J Mater Chem 21(10):3428–3431.  https://doi.org/10.1039/C0JM02461ACrossRefGoogle Scholar
  132. 132.
    Zhang Q, Wu S, Zhang L, Lu J, Verproot F, Liu Y, Xing Z, Li J, Song X-M (2011) Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron 26(5):2632–2637.  https://doi.org/10.1016/j.bios.2010.11.024CrossRefPubMedGoogle Scholar
  133. 133.
    Shante VK, Kirkpatrick S (1971) An introduction to percolation theory. Adv Phys 20(85):325–357CrossRefGoogle Scholar
  134. 134.
    Liu N, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Func Mater 18(10):1518–1525CrossRefGoogle Scholar
  135. 135.
    Mukhopadhyay P, Gupta RK (2012) Graphite, graphene, and their polymer nanocomposites. CRC PressGoogle Scholar
  136. 136.
    Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Func Mater 19(14):2297–2302CrossRefGoogle Scholar
  137. 137.
    Fim FdC, Basso NR, Graebin AP, Azambuja DS, Galland GB (2013) Thermal, electrical, and mechanical properties of polyethylene–graphene nanocomposites obtained by in situ polymerization. J Appl Polym Sci 128(5):2630–2637CrossRefGoogle Scholar
  138. 138.
    Ramanathan T, Abdala A, Stankovich S, Dikin D, Herrera-Alonso M, Piner R, Adamson D, Schniepp H, Chen X, Ruoff R (2008) Functionalized graphene sheets for polymer nanocomposites. Nat Nanotechnol 3(6):327–331CrossRefGoogle Scholar
  139. 139.
    Verdejo R, Barroso-Bujans F, Rodriguez-Perez MA, de Saja JA, Lopez-Manchado MA (2008) Functionalized graphene sheet filled silicone foam nanocomposites. J Mater Chem 18(19):2221–2226CrossRefGoogle Scholar
  140. 140.
    Higginbotham AL, Lomeda JR, Morgan AB, Tour JM (2009) Graphite oxide flame-retardant polymer nanocomposites. ACS Appl Mater Interfaces 1(10):2256–2261PubMedCrossRefGoogle Scholar
  141. 141.
    Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21(10):3301–3310CrossRefGoogle Scholar
  142. 142.
    Salavagione HJ, Martínez G, Gómez MA (2009) Synthesis of poly (vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J Mater Chem 19(28):5027–5032CrossRefGoogle Scholar
  143. 143.
    Fang M, Wang K, Lu H, Yang Y, Nutt S (2009) Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. J Mater Chem 19(38):7098–7105CrossRefGoogle Scholar
  144. 144.
    Yoonessi M, Shi Y, Scheiman DA, Lebron-Colon M, Tigelaar DM, Weiss R, Meador MA (2012) Graphene polyimide nanocomposites; thermal, mechanical, and high-temperature shape memory effects. ACS Nano 6(9):7644–7655PubMedCrossRefGoogle Scholar
  145. 145.
    Yoonessi M, Gaier JR (2010) Highly conductive multifunctional graphene polycarbonate nanocomposites. ACS Nano 4(12):7211–7220PubMedCrossRefGoogle Scholar
  146. 146.
    Lee S, Hong JY, Jang J (2013) The effect of graphene nanofiller on the crystallization behavior and mechanical properties of poly (vinyl alcohol). Polym Int 62(6):901–908CrossRefGoogle Scholar
  147. 147.
    Gnanasekaran K, Heijmans T, van Bennekom S, Woldhuis H, Wijnia S, Friedrich H (2017) 3D printing of CNT-and graphene-based conductive polymer nanocomposites by fused deposition modeling. Appl Mater Today 9:21–28CrossRefGoogle Scholar
  148. 148.
    Bhushan B (2010) Springer handbook of nanotechnology. Springer Science & Business MediaGoogle Scholar
  149. 149.
    Teo KB, Singh C, Chhowalla M, Milne WI (2003) Catalytic synthesis of carbon nanotubes and nanofibers. Encycl Nanosci Nanotechnol 10(1)Google Scholar
  150. 150.
    Homenick CM, Lawson G, Adronov A (2007) Polymer grafting of carbon nanotubes using living free-radical polymerization. Polym Rev 47(2):265–290CrossRefGoogle Scholar
  151. 151.
    Coquay P, Peigney A, De Grave E, Flahaut E, Vandenberghe RE, Laurent C (2005) Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single-and double-walled carbon nanotubes (CNTs). 1. The CNT−Fe/Co−MgO system. J Phys Chem B 109(38):17813–17824PubMedCrossRefGoogle Scholar
  152. 152.
    Hammel E, Tang X, Trampert M, Schmitt T, Mauthner K, Eder A, Pötschke P (2004) Carbon nanofibers for composite applications. Carbon 42(5):1153–1158CrossRefGoogle Scholar
  153. 153.
    Kuzuya C, In-Hwang W, Hirako S, Hishikawa Y, Motojima S (2002) Preparation, morphology, and growth mechanism of carbon nanocoils. Chem Vap Deposition 8(2):57–62CrossRefGoogle Scholar
  154. 154.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRefGoogle Scholar
  155. 155.
    Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7):1709–1718CrossRefGoogle Scholar
  156. 156.
    Glasgow D, Tibbetts G, Matuszewski J, Walters K, Lake M (May 2004) Surface treatment of carbon nano fibers for improved composite mechanical properties. In: International society for advancement of materials and process engineering (SAMPE) symposium and exhibition, Long Beach, CA, pp 16–20Google Scholar
  157. 157.
    Lakshminarayanan PV, Toghiani H, Pittman CU (2004) Nitric acid oxidation of vapor grown carbon nanofibers. Carbon 42(12):2433–2442CrossRefGoogle Scholar
  158. 158.
    Baek J-B, Lyons CB, Tan L-S (2004) Grafting of vapor-grown carbon nanofibers via in-situ polycondensation of 3-phenoxybenzoic acid in poly (phosphoric acid). Macromolecules 37(22):8278–8285CrossRefGoogle Scholar
  159. 159.
    Glasgow DG, Lake ML (2003) Production of high surface energy, high surface area vapor grown carbon fiber. Google PatentsGoogle Scholar
  160. 160.
    Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K (2007) Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Compos B Eng 38(2):228–235CrossRefGoogle Scholar
  161. 161.
    Choi Y-K, K-i Sugimoto, Song S-M, Gotoh Y, Ohkoshi Y, Endo M (2005) Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon 43(10):2199–2208CrossRefGoogle Scholar
  162. 162.
    Lozano K, Barrera EV (2001) Nanofiber-reinforced thermoplastic composites. I. Thermoanalytical and mechanical analyses. J Appl Polym Sci 79(1):125–133.  https://doi.org/10.1002/1097-4628(20010103)79:1%3c125::aid-app150%3e3.0.co;2-dCrossRefGoogle Scholar
  163. 163.
    Xu Y, Higgins B, Brittain WJ (2005) Bottom-up synthesis of PS–CNF nanocomposites. Polymer 46(3):799–810CrossRefGoogle Scholar
  164. 164.
    Choi YK, Sugimoto KI, Song SM, Endo M (2005) Mechanical and thermal properties of vapor-grown carbon nanofiber and polycarbonate composite sheets. Mater Lett 59(27):3514–3520CrossRefGoogle Scholar
  165. 165.
    Zeng J, Saltysiak B, Johnson W, Schiraldi DA, Kumar S (2004) Processing and properties of poly (methyl methacrylate)/carbon nano fiber composites. Compos B Eng 35(2):173–178CrossRefGoogle Scholar
  166. 166.
    Kumar S, Lively B, Sun L, Li B, Zhong W (2010) Highly dispersed and electrically conductive polycarbonate/oxidized carbon nanofiber composites for electrostatic dissipation applications. Carbon 48(13):3846–3857CrossRefGoogle Scholar
  167. 167.
    Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41(5):889–893CrossRefGoogle Scholar
  168. 168.
    Rasheed A, Dadmun MD, Britt PF (2006) Polymer-nanofiber composites: Enhancing composite properties by nanofiber oxidation. J Polym Sci, Part B: Polym Phys 44(21):3053–3061CrossRefGoogle Scholar
  169. 169.
    Kumar S, Rath T, Mahaling R, Reddy C, Das C, Pandey K, Srivastava R, Yadaw S (2007) Study on mechanical, morphological and electrical properties of carbon nanofiber/polyetherimide composites. Mater Sci Eng, B 141(1):61–70CrossRefGoogle Scholar
  170. 170.
    Barick AK, Tripathy DK (2010) Effect of nanofiber on material properties of vapor-grown carbon nanofiber reinforced thermoplastic polyurethane (TPU/CNF) nanocomposites prepared by melt compounding. Compos A Appl Sci Manuf 41(10):1471–1482.  https://doi.org/10.1016/j.compositesa.2010.06.009CrossRefGoogle Scholar
  171. 171.
    Barick A, Tripathy D (2012) Preparation and characterization of carbon nanofiber reinforced thermoplastic polyurethane nanocomposites. J Appl Polym Sci 124(1):765–780CrossRefGoogle Scholar
  172. 172.
    Takahashi T, Yonetake K, Koyama K, Kikuchi T (2003) Polycarbonate crystallization by vapor-grown carbon fiber with and without magnetic field. Macromol Rapid Commun 24(13):763–767CrossRefGoogle Scholar
  173. 173.
    Sandler J, Werner P, Shaffer MS, Demchuk V, Altstädt V, Windle AH (2002) Carbon-nanofibre-reinforced poly (ether ether ketone) composites. Compos A Appl Sci Manuf 33(8):1033–1039CrossRefGoogle Scholar
  174. 174.
    Al-Saleh MH, Sundararaj U (2011) Review of the mechanical properties of carbon nanofiber/polymer composites. Compos A Appl Sci Manuf 42(12):2126–2142CrossRefGoogle Scholar
  175. 175.
    Zeng J, Saltysiak B, Johnson WS, Schiraldi DA, Kumar S (2004) Processing and properties of poly(methyl methacrylate)/carbon nano fiber composites. Compos B Eng 35(2):173–178.  https://doi.org/10.1016/S1359-8368(03)00051-9CrossRefGoogle Scholar
  176. 176.
    Zhou Y, Pervin F, Jeelani S (2007) Effect vapor grown carbon nanofiber on thermal and mechanical properties of epoxy. J Mater Sci 42(17):7544–7553CrossRefGoogle Scholar
  177. 177.
    Green KJ, Dean DR, Vaidya UK, Nyairo E (2009) Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior. Compos A Appl Sci Manuf 40(9):1470–1475CrossRefGoogle Scholar
  178. 178.
    Gunes IS, Cao F, Jana SC (2008) Evaluation of nanoparticulate fillers for development of shape memory polyurethane nanocomposites. Polymer 49(9):2223–2234CrossRefGoogle Scholar
  179. 179.
    Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C 60: buckminsterfullerene. Nature 318(6042):162–163CrossRefGoogle Scholar
  180. 180.
    Arndt M, Nairz O, Vos-Andreae J, Keller C, Van der Zouw G, Zeilinger A (1999) Wave–particle duality of C60 molecules. Nature 401(6754):680–682PubMedCrossRefPubMedCentralGoogle Scholar
  181. 181.
    Chakravarty S, Kivelson S (1991) Superconductivity of doped fullerenes. EPL (Europhys Lett) 16(8):751CrossRefGoogle Scholar
  182. 182.
    Culotta E, Koshland DE Jr (1991) Buckyballs: wide open playing field for chemists. Science 254(5039):1706PubMedCrossRefPubMedCentralGoogle Scholar
  183. 183.
    Eletskiĭ A, Smirnov BM (1993) Fullerenes. Phys Usp 36(3):202–224CrossRefGoogle Scholar
  184. 184.
    Milliken J, Keller TM, Baronavski A, McElvany SW, Callahan JH, Nelson H (1991) Thermal and oxidative analyses of buckminsterfullerene, C60. Chem Mater 3(3):386–387CrossRefGoogle Scholar
  185. 185.
    Diky VV, Kabo GJ (2000) Thermodynamic properties of C 60 and C 70 fullerenes. Russ Chem Rev 69(2):95–104CrossRefGoogle Scholar
  186. 186.
    Kolodney E, Tsipinyuk B, Budrevich A (1994) The thermal stability and fragmentation of C60 molecule up to 2000 K on the milliseconds time scale. J Chem Phys 100(11):8542–8545CrossRefGoogle Scholar
  187. 187.
    Zhang B, Wang C, Chan CT, Ho K (1993) Thermal disintegration of carbon fullerenes. Phys Rev B 48(15):11381CrossRefGoogle Scholar
  188. 188.
    Kim SG, Tománek D (1994) Melting the fullerenes: a molecular dynamics study. Phys Rev Lett 72(15):2418PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29(11):1079–1141CrossRefGoogle Scholar
  190. 190.
    Zeinalov EB, Koßmehl G (2001) Fullerene C60 as an antioxidant for polymers. Polym Degrad Stab 71(2):197–202.  https://doi.org/10.1016/S0141-3910(00)00109-9CrossRefGoogle Scholar
  191. 191.
    Troitskii BB, Troitskaya LS, Dmitriev AA, Yakhnov AS (2000) Inhibition of thermo-oxidative degradation of poly(methyl methacrylate) and polystyrene by C60. Eur Polym J 36(5):1073–1084.  https://doi.org/10.1016/S0014-3057(99)00156-1CrossRefGoogle Scholar
  192. 192.
    Zuev VV, Bertini F, Audisio G (2005) Fullerene C60 as stabiliser for acrylic polymers. Polym Degrad Stab 90(1):28–33.  https://doi.org/10.1016/j.polymdegradstab.2005.02.011CrossRefGoogle Scholar
  193. 193.
    Zhao L, Guo Z, Cao Z, Zhang T, Fang Z, Peng M (2013) Thermal and thermo-oxidative degradation of high density polyethylene/fullerene composites. Polym Degrad Stab 98(10):1953–1962CrossRefGoogle Scholar
  194. 194.
    Pa Song, Zhu Y, Tong L, Fang Z (2008) C60 reduces the flammability of polypropylene nanocomposites by in situ forming a gelled-ball network. Nanotechnology 19(22):225707CrossRefGoogle Scholar
  195. 195.
    Wozniak-Braszak A, Jurga K, Jurga J, Baranowski M, Grzesiak W, Brycki B, Holderna-Natkaniec K (2012) Effect of fullerene derivates on thermal and crystallization behavior of PBT/Decylamine-C60 and PBT/TCNEO-C60 nanocomposites. J Nanomater 2012:8.  https://doi.org/10.1155/2012/932573CrossRefGoogle Scholar
  196. 196.
    Sinitsin AN, Zuev VV (2016) Dielectric relaxation of fulleroid materials filled PA 6 composites and the study of its mechanical and tribological performance. Mater Chem Phys 176:152–160.  https://doi.org/10.1016/j.matchemphys.2016.04.007CrossRefGoogle Scholar
  197. 197.
    Sanz A, Wong HC, Nedoma AJ, Douglas JF, Cabral JT (2015) Influence of C60 fullerenes on the glass formation of polystyrene. Polymer 68:47–56.  https://doi.org/10.1016/j.polymer.2015.05.001CrossRefGoogle Scholar
  198. 198.
    Tayfun U, Kanbur Y, Abaci U, Guney HY, Bayramli E (2015) Mechanical, flow and electrical properties of thermoplastic polyurethane/fullerene composites: Effect of surface modification of fullerene. Compos B Eng 80:101–107.  https://doi.org/10.1016/j.compositesb.2015.05.013CrossRefGoogle Scholar
  199. 199.
    Alekseeva OV, Barannikov VP, Bagrovskaya NA, Noskov AV (2012) DSC investigation of the polystyrene films filled with fullerene. J Therm Anal Calorim 109(2):1033–1038.  https://doi.org/10.1007/s10973-011-1936-4CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of ChemistryM.S. Ramaiah Univeristy of Applied SciencesBengaluruIndia
  2. 2.Raychem Innovation CentreRaychem RPG (P) Ltd.HalolIndia

Personalised recommendations