Dielectric Properties of Polymer–Carbon Composites

  • Suryakanta NayakEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Polymer composites are widely used in recent days for various applications. Carbon-based polymer composites have great attention mainly towards electrical applications. This chapter is focused on different carbon fillers and their polymer-based composites/nanocomposites. The effect of various carbon fillers on different polymer composites has been thoroughly described. The dielectric properties of carbon–polymer composites can be affected by many factors. These factors are as follows: processing condition, composite morphology, frequency, concentration, temperature, electric field, and pressure. The effects of all the above factors on dielectric properties of carbon–polymer composites have been discussed.


Polymer Carbon Dielectric Composite Electrical 


  1. 1.
    Mittal G, Dhand V, Rhee KY, Park S-J, Lee WR (2015) A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J Ind Eng Chem 21:11–25CrossRefGoogle Scholar
  2. 2.
    Youssef AM (2013) Polymer nanocomposites as a new trend for packaging applications. Polym-Plast Technol Eng 52:635–660CrossRefGoogle Scholar
  3. 3.
    Manias E (2007) Nanocomposites stiffer by design. Nat Mater 6:9–11CrossRefGoogle Scholar
  4. 4.
    Nayak S, Chaki TK, Khastgir D (2014) Development of flexible piezoelectric poly(dimethylsiloxane)–BaTiO3 nanocomposites for electrical energy harvesting. Ind Eng Chem Res 53(39):14982–14992CrossRefGoogle Scholar
  5. 5.
    Koulouridis S, Kiziltas G, Zhou Y, Hansford DJ, Volakis JL (2006) Polymer–ceramic composites for microwave applications: fabrication and performance assessment. IEEE Trans Microw Theory Tech 54(12):4202–4208CrossRefGoogle Scholar
  6. 6.
    Rogers JA, Bao Z, Baldwin K, Dodabalapur A, Crone B, Raju VR, Kuck V, Katz H, Amundson K, Ewing J, Drzaic P (2001) Paper-like electronic displays: large-area rubber-stamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc Natl Acad Sci USA 98(9):4835–4840CrossRefGoogle Scholar
  7. 7.
    Hwang DH, Chuah BS, Li XC, Kimt ST, Moratti SC, Holmes AB (1998) New luminescent polymers for LEDs and LECs. Macromol Symp 125(1):111–120CrossRefGoogle Scholar
  8. 8.
    Li R, DeJean G, Tentzeris MM, Papapolymerou J, Laskar J (2005) Radiation-pattern improvement of patch antennas on a large-size substrate using a compact soft-surface structure and its realization on LTCC multilayer technology. IEEE Trans Antennas Propag 53(1):200–208CrossRefGoogle Scholar
  9. 9.
    Nayak S, Chaki TK, Khastgir D (2016) Dielectric relaxation and viscoelastic behavior of polyurethane–titania composites: dielectric mixing models to explain experimental results. Polym Bull 74(2):369–392CrossRefGoogle Scholar
  10. 10.
    Nayak S, Kumar Chaki T, Khastgir D (2012) Development of poly(dimethylsiloxane)/BaTiO3 nanocomposites as dielectric material. Adv Mater Res 622–623:897–900CrossRefGoogle Scholar
  11. 11.
    Gam S, Meth JS, Zane SG, Chi C, Wood BA, Winey KI, Clarke N, Composto RJ (2012) Polymer diffusion in a polymer nanocomposite: effect of nanoparticle size and polydispersity. Soft Matter 8(24):6512CrossRefGoogle Scholar
  12. 12.
    Liang GD, Tjong SC (2006) Electrical properties of low-density polyethylene/multiwalled carbon nanotube nanocomposites. Mater Chem Phys 100(1):132–137CrossRefGoogle Scholar
  13. 13.
    Patel HA, Somani RS, Bajaj HC, Jasra RV (2006) Nanoclays for polymer nanocomposites, paints, inks, greases and cosmetics formulations, drug delivery vehicle and waste water treatment. Bull Mater Sci 29(2):133–145CrossRefGoogle Scholar
  14. 14.
    Segal E, Tchoudakov R, Narkis M, Siegma A (2002) Thermoplastic polyurethane-carbon black compounds: structure, electrical conductivity and sensing of liquids. Polym Eng Sci 42(12):2430–2439CrossRefGoogle Scholar
  15. 15.
    Nayak S, Sahoo B, Kumar Chaki T, Khastgir D (2013) Development of polyurethane–titania nanocomposites as dielectric and piezoelectric material. RSC Adv 3(8):2620CrossRefGoogle Scholar
  16. 16.
    Nayak S, Rahaman M, Pandey AK, Setua DK, Chaki TK, Khastgir D (2013) Development of poly(dimethylsiloxane)-titania nanocomposites with controlled dielectric properties: effect of heat treatment of titania on electrical properties. J Appl Polym Sci 127(1):784–796CrossRefGoogle Scholar
  17. 17.
    Manna R, Nayak S, Rahaman M, Khastgir D (2014) Effect of annealed titania on dielectric and mechanical properties of ethylene propylene diene monomer-titania nanocomposites. e-Polymers 14(4):267–275CrossRefGoogle Scholar
  18. 18.
    Kasgoz A, Akın D, Ayten AI, Durmus A (2014) Effect of different types of carbon fillers on mechanical and rheological properties of cyclic olefin copolymer (COC) composites. Compos B Eng 66:126–135CrossRefGoogle Scholar
  19. 19.
    Zhou Z, Wang S, Zhang Y, Zhang Y (2006) Effect of different carbon fillers on the properties of PP composites: comparison of carbon black with multiwalled carbon nanotubes. J Appl Polym Sci 102(5):4823–4830CrossRefGoogle Scholar
  20. 20.
    Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim J-K (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480–5487CrossRefGoogle Scholar
  21. 21.
    Ameli A, Nofar M, Park CB, Tschke PP, Rizvi G (2014) Polypropylene/carbon nanotube nano/microcellular structures with high dielectric permittivity, low dielectric loss, and low percolation threshold. Carbon 71:206–217CrossRefGoogle Scholar
  22. 22.
    Dalmas F, Cavaille J-Y, Gauthier C, Chazeau L, Dendievel R (2007) Viscoelastic behavior and electrical properties of flexible nanofiber filled polymer nanocomposites. Influence of processing conditions. Compos Sci Technol 67:829–839CrossRefGoogle Scholar
  23. 23.
    Bai JB, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites-experimental investigation. Compos A Appl Sci Manuf 34:689–694CrossRefGoogle Scholar
  24. 24.
    Wang Q, Dai J, Li W, Wei Z, Jiang J (2008) The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos Sci Technol 68:1644–1648CrossRefGoogle Scholar
  25. 25.
    Dang Z-M, Wang L, Yin Y, Zhang Q, Lei Q-Q (2007) Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv Mater 19:852–857CrossRefGoogle Scholar
  26. 26.
    Seo M-K, Park S-J (2004) Electrical resistivity and rheological behaviors of carbon nanotubes-filled polypropylene composites. Chem Phys Lett 395:44–48CrossRefGoogle Scholar
  27. 27.
    Song YS, Youn JR (2005) Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites. Carbon 43:1378–1385CrossRefGoogle Scholar
  28. 28.
    Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polym Bull 45:8863–8870CrossRefGoogle Scholar
  29. 29.
    Li Q, Xue QZ, Gao XL, Zheng QB (2009) Temperature dependence of the electrical properties of the carbon nanotube/polymer composites. eXPRESS Polym Lett 3(12):769–777CrossRefGoogle Scholar
  30. 30.
    Mohanraj GT, Dey PK, Chaki TK, Chakraborty A, Khastgir D (2007) Effect of temperature, pressure, and composition on dc resistivity and ac conductivity of conductive styrene-butadiene rubber–particulate metal alloy nanocomposites. Polym Compos 28(5):696–704CrossRefGoogle Scholar
  31. 31.
    Mohiuddin M, Hoa SV (2011) Electrical resistance of CNT-PEEK composites under compression at different temperatures. Nanoscale Res Lett 6:419–423CrossRefGoogle Scholar
  32. 32.
    Nayak S (2015) Electroactive ceramic filled flexible poly(dimethylsiloxane) and polyurethane composites for dielectric and piezoelectric applications. PhD Thesis, Indian Institute of Technology KharagpurGoogle Scholar
  33. 33.
    Rahaman M, Chaki TK, Khastgir D (2014) Polyaniline/ethylene vinyl acetate composites as dielectric sensor. Polym Eng Sci 54(7):1632–1639CrossRefGoogle Scholar
  34. 34.
    Aminabhavi MT, Cassidy PE, Thompson CM (1990) Electrical resistivity of carbon-black-loaded rubbers. Rubber Chem Technol 63(3):451–471CrossRefGoogle Scholar
  35. 35.
    Hu CH, Liu CH, Chen LZ, Peng YC, Fan SS (2008) Resistance-pressure sensitivity and a mechanism study of multiwall carbon nanotube networks/poly(dimethylsiloxane) composites. Appl Phys Lett 93:03310-1-033108-3CrossRefGoogle Scholar
  36. 36.
    Hwang J, Jang J, Hong K, Kim KN, Han JH, Shin K, Park CE (2011) Poly(3-hexylthiophene) wrapped carbon nanotube/poly(dimethylsiloxane) composites for use in finger-sensing piezoresistive pressure sensors. Carbon 49:106–110CrossRefGoogle Scholar
  37. 37.
    Sa-Gong G, Safari A, Jang SJ, Newnham RE (1986) Poling flexible piezoelectric composites. Ferroelectr Lett Sect 5(5):131–142CrossRefGoogle Scholar
  38. 38.
    Park K-I, Jeong CK, Ryu J, Hwang G-T, Lee KJ (2013) Flexible and large-area nanocomposite generators based on lead zirconate titanate particles and carbon nanotubes. Adv Energy Mater 3:1539–1544CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations