Advertisement

Electrical Conductivity of Polymer–Carbon Composites: Effects of Different Factors

  • Mostafizur Rahaman
  • Ali Aldalbahi
  • Lalatendu Nayak
  • Radhashyam Giri
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

In this chapter, the electrical conductivity/resistivity of polymer–carbon composites has been discussed in detail. The types of electrical resistivity and their measurement procedure have been depicted pictorially. The electrical conductivity of different carbon materials like diamond, graphite, fullerene, carbon fiber, carbon black, carbon nanotubes, and graphene are noted and discussed. The different techniques of preparation/processing of conducting polymer/carbon composites are mentioned here within short. Moreover, how the geometry/structure of different carbons controls the electrical conductivity of polymer composites has been critically reviewed. The electrical percolation threshold and the conductivity of polymer/carbon composites that depends on many physical and chemical factors are investigated from different literature sources and reported in this chapter.

Keywords

Polymer/carbon composites Electrical conductivity Percolation threshold Measurement of conductivity Dependency of conductivity 

References

  1. 1.
    Kaynak A, Mohan S, Unsworth J, Clout R (1994) Plane-wave shielding effectiveness studies on conducting polypyrrole. J Mater Sci Lett 13:1121–1123CrossRefGoogle Scholar
  2. 2.
    Kohlman RS, Min YG, MacDiarmid AG, Epstein AJ (1996) Tunability of high frequency shielding in electronic polymers. J Eng Appl Sci 2:1412–1416Google Scholar
  3. 3.
    Tan S, Zhang M, Zeng H (1998) Electro-conductive polymer composite for shielding EMI. Cailiao Gongcheng/J Mater Eng 5:6–9Google Scholar
  4. 4.
    Rupprecht L, Hawkinson C (1999) Conductive plastics for medical applications. Med Device Diagn Ind 21:8Google Scholar
  5. 5.
    Wen S, Chung DDL (2005) Pitch-matrix composites for electrical, electromagnetic and strain-sensing applications. J Mater Sci 40:3897–3903CrossRefGoogle Scholar
  6. 6.
    MacDiarmid AG (2001) Nobel lecture. Angew Chem Int Ed 40:2581–2590CrossRefGoogle Scholar
  7. 7.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J Chem Soc Chem Commun 578–580Google Scholar
  8. 8.
    Heeger AJ, Kivelson S, Schrieffer JR, Su WP (1988) Solitons in conducting polymers. Rev Mod Phys 60:781–850CrossRefGoogle Scholar
  9. 9.
    Salaneck WR, Bredas JL (1994) Conjugated polymers. Solid State Comm 92:31–36CrossRefGoogle Scholar
  10. 10.
    Unsworth J, Conn C, Jin Z, Kaynak A, Ediriweera R, Innis P, Booth N (1994) Conducting polymers: properties and applications. J Intell Mater Sys Struc 5:595–604CrossRefGoogle Scholar
  11. 11.
    Sauerer W (1994) Intrinsically conducting polymers—from exploratory research to applications. Galvanotechnik 85:1467–1472Google Scholar
  12. 12.
    Borgmans APJH, Glaser RH (1995) Design considerations for EMI shielding conductive plastic compounds. Evaluat Eng 34:S32–S37Google Scholar
  13. 13.
    Chung DDL (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39:279–285CrossRefGoogle Scholar
  14. 14.
    Sau KP, Chaki TK, Chakraborty A, Khastgir D (1997) Electromagnetic interference shielding by carbon black and carbon fibre filled rubber composites. Plast Rub Compos Process Appl 26:291–297Google Scholar
  15. 15.
    Flandin L, Hiltner A, Baer E (2001) Interrelationships between electrical and mechanical properties of a carbon black-filled ethylene-ocetene elastomer. Polymer 42:827–838CrossRefGoogle Scholar
  16. 16.
    Jana PB, Mallick AK, De SK (1993) Electromagnetic interference shielding effectiveness of short carbon fibre-filled polychloroprene vulcanized by barium ferrite. J Mater Sci 28:2097–2104CrossRefGoogle Scholar
  17. 17.
    Xing L, Liu J, Ren S (1998) Study on electromagnetic property of short carbon fibers and its application to radar absorbing materials. Cailiao Gongcheng/J Mater Eng 1:19–21Google Scholar
  18. 18.
    Jimenez G, Jana SC (2007) Electrically conductive polymer nanocomposites of polymethylmethacrylate and carbon nanofibers prepared by chaotic mixing. Composites Part A Appl Sci Manuf 38:983–993CrossRefGoogle Scholar
  19. 19.
    Sohi NJS, Bhadra S, Khastgir D (2011) The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 41:1349–1361CrossRefGoogle Scholar
  20. 20.
    Potschke P, Bhattacharyya AR, Janke A (2003) Morphology and electrical resistivity of melt mixed blends of polyethylene and carbon nanotube filled polycarbonate. Polymer 44:8061–8069CrossRefGoogle Scholar
  21. 21.
    Potschke P, Bhattacharyya AR, Janke A (2004) Carbon nanotube-filled polycarbonate composites produced by melt mixing and their use in blends with polyethylene. Carbon 42:965–969CrossRefGoogle Scholar
  22. 22.
    Ounaies Z, Park C, Wise KE, Siochi EJ, Harrison JS (2003) Electrical properties of single wall carbon nanotube reinforced polyimide composites. Compos Sci Technol 63:1637–1646CrossRefGoogle Scholar
  23. 23.
    Yoon JK, Taek SS, Hyung DC, Jong HK, Yeon-Choon C, Ho GY (2005) Electrical conductivity of chemically modified multiwalled carbon nanotube/epoxy composites. Carbon 43:23–30CrossRefGoogle Scholar
  24. 24.
    Agnihotri P, Basu S, Kar KK (2011) Effect of carbon nanotube length and density on the properties of carbon nanotube-coated carbon fiber/polyester composites. Carbon 49:3098–3106CrossRefGoogle Scholar
  25. 25.
    Zou JF, Yu ZZ, Pan YX, Fang XP, Ou YC (2002) Conductive mechanism of polymer/graphite conducting composites with low percolation threshold. J Polym Sci Part B Polym Phys 40:954–963CrossRefGoogle Scholar
  26. 26.
    Savvinova ME, Kovalenko NA (2009) Influence of technological parameters on the electrical conduction of carbon composites. Russ Eng Res 29:487–489CrossRefGoogle Scholar
  27. 27.
    Sidhu A, Reike J, Michelsen U, Messinger R, Habiger E, Wolf J (1997) Metallization of plastics for shielding. In: IEEE international symposium on electromagnetic compatibility, Piscataway, New Jersey, USA: IEEE, pp 102–105Google Scholar
  28. 28.
    Jiang H, Moon KS, Li Y, Wong CP (2006) Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem Mater 18:2969–2973CrossRefGoogle Scholar
  29. 29.
    Gwinner D, Scheyrer P, Fernandez W (1996) Selective deposition of aluminum on plastic parts for EMI shielding. In: Proceedings of 39th annual technical conference. Society of Vacuum Coaters, Albuquerque, New Mexico, USA, p 336Google Scholar
  30. 30.
    Notingher PV, Panaitescu D, Paven H, Chipara M (2004) Some characteristics of conductive polymer composites containing stainless steel fibers. J Optoelectro Adv Mater 6:1081–1084Google Scholar
  31. 31.
    Francis G, Hanejko GW, Ellis Timothy JH (1998) Application of high performance material processing—electromagnetic products. International conference on powder metallurgy & particulate materials. 31 May–4 June, Las Vegas, NV, USAGoogle Scholar
  32. 32.
    Stabik J, Dybowska A, Chomiak M (2010) Polymer composites filled with powders as polymer graded materials. J Achiev Mater Manuf Eng 43(1):153–161Google Scholar
  33. 33.
    Pierre Deltour R, Perenboom JA, Van Bentum PJM (1990) Electrical-conduction mechanisms in polymer-copper-particle composites. 1. Temperature and high-magnetic-field dependence of the conductivity. Phys Rev B 42:3380–3385CrossRefGoogle Scholar
  34. 34.
    Zhu M, Chung DDL (1991) Nickel fiber silicone–matrix composites as resilient electrical conductors. J Electron Packag 113:417–420CrossRefGoogle Scholar
  35. 35.
    Shui X, Chung DDL (2000) Submicron diameter nickel filaments and their polymer-matrix composites. J Mater Sci 35:1773–1785CrossRefGoogle Scholar
  36. 36.
    Fernando GSJ, Soares BG, Siddaramaiah Barra GMO, Herbst MH (2006) Influence of plasticizers (DOP and CNSL) on mechancial and electrical properties of SBS/polyaniline blends. Polymer 47:7548–7553CrossRefGoogle Scholar
  37. 37.
    Lakshmi K, John H, Mathew KT, Joseph R, George KE (2009) Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Mater 57:371–375CrossRefGoogle Scholar
  38. 38.
    Askeland D (1988) The science and engineering of materials. Cengage Learning, StamfordGoogle Scholar
  39. 39.
    Lee PA, Stone AD, Fukuyama H (1987) Universal conductance fluctuations in metals: Effects of finite temperature, interactions, and magnetic field. Phys Rev B 35(3):1039–1070CrossRefGoogle Scholar
  40. 40.
    Kumar P, Yashonath S (2006) Ionic conduction in the solid state. J Chem Soc 118(1):135–154Google Scholar
  41. 41.
    ASTM Standard D 257-99 (1999) Standard test methods for DC resistance or conductance of insulating materialsGoogle Scholar
  42. 42.
    ESD STM 11.11-2001 Standard (2001) Surface resistance measurement of static dissipative planar materialsGoogle Scholar
  43. 43.
    Heaney MB (1999) Electrical Conductivity and Resistivity. In: The measurement, instrumentation and sensors handbook. CRC Press, Boca RatonGoogle Scholar
  44. 44.
    IEC 61340-5-1 Standard (1998) Electrostatics—part 5-1: Protection of electronic devices from electrostatic phenomena—general requirementsGoogle Scholar
  45. 45.
    Banaszczyk J, Schwarz A, De Mey G, Van Langenhove L (2010) The Van der Pauw method for sheet resistance measurements of polypyrrole-coated para-aramide woven fabrics. J Appl Polym Sci 117:2553–2558Google Scholar
  46. 46.
    Rietveld G, Koijmans ChV, Henderson LCA, Hall MJ, Harmon S, Warnecke P, Schumacher B (2003) DC conductivity measurements in the Van Der Pauw geometry. IEEE Trans Instrum Meas 52(2):449–453CrossRefGoogle Scholar
  47. 47.
    Majid AJ (2011) Resistivity measurements of conductors and semiconductors of different geometrical shapes using Van der Pauw technique. Int J Sci Eng Res 2(10):1–5Google Scholar
  48. 48.
    Ram R, Rahaman M, Khastgir D (2015) Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) composites: modelling of DC conductivity. Composites Part A Appl Sci Manuf 69:30–39CrossRefGoogle Scholar
  49. 49.
    Rahaman M, Chaki TK, Khastgir D (2012) Modeling of DC conductivity for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through in-situ polymerization of aniline in EVA matrix. Compos Sci Technol 72:1575–1580CrossRefGoogle Scholar
  50. 50.
    Foygel M, Morris R, Anez D, French S, Sobolev V (2005) Theoretical and computational studies of carbon nanotube composites and sus-pensions: electrical and thermal conductivity. Phys Rev B 71:104201/1–104201/8Google Scholar
  51. 51.
    Stauffer D (1987) Introduction to percolation theory. Taylor and Francis, Inc., Philadelphia, p 181Google Scholar
  52. 52.
    Sahimi M (1994) Applications of percolation theory. Taylor and Francis, London, p 276Google Scholar
  53. 53.
    Tchoudakov R, Breuer O, Narkis M, Siegmann A (1996) Conductive polymer blends with low carbon black loading: polypropylene/polyamide. Polym Eng Sci 36:1336–1346CrossRefGoogle Scholar
  54. 54.
    Miyasaka K, Watanabe K, Jojima E, Aida H, Sumita M, Ishikawa K (1982) Electrical conductivity of carbon-polymer composites as a function of carbon content. J Mater Sci 17:1610–1616CrossRefGoogle Scholar
  55. 55.
    Sumita M, Abe H, Kayaki H, Miyasaka K (1986) Effect of melt viscosity and surface tension of polymers on the percolation threshold of conductive-particle-filled polymeric composites. J Macromol Sci Phys B25:171–184CrossRefGoogle Scholar
  56. 56.
    Sumita M, Asai S, Miyadera N, Jojima E, Miyasaka K (1986) Electrical conductivity of carbon black filled ethylene-vinyl acetate copolymer as a function of vinyl acetate content. Colloid Polym Sci 264:212–217CrossRefGoogle Scholar
  57. 57.
    Lee GJ, Suh KD, Im SS (1998) Study of electrical phenomena in carbon black–filled HDPE composite. Polym Eng Sci 38:471–477CrossRefGoogle Scholar
  58. 58.
    Feller JF, Linossier I, Levesque G (2002) Conductive polymer composites (CPCs): comparison of electrical properties of poly(ethylene-co-ethyl acrylate)-carbon black with poly(butylene terephthalate)/poly(ethylene-co-ethyl acrylate)-carbon black. Polym Advan Technol 13:714–724CrossRefGoogle Scholar
  59. 59.
    Schueler R, Petermann J, Schulte K, Wentzel HP (1997) Agglomeration and electrical percolation behavior of carbon black dispersed in epoxy resin. J Appl Polym Sci 63:1741–1746CrossRefGoogle Scholar
  60. 60.
    Fournier J, Boiteux G, Seytre G, Marichy G (1997) Percolation network of polypyrrole in conducting polymer composites. Synth Met 84:839–840CrossRefGoogle Scholar
  61. 61.
    Boiteux G, Fournier J, Issotier D, Seytre G, Marichy G (1999) Conductive thermoset composites: PTC effect. Synth Met 102:1234–1235CrossRefGoogle Scholar
  62. 62.
    Flandin L, Prasse T, Schueler R, Schulte K, Bauhofer W, Cavaille JY (1999) Anomalous percolation transition in carbon-black–epoxy composite materials. Phys Rev B 59:14349–14355CrossRefGoogle Scholar
  63. 63.
    Tang H, Chen XF, Luo YX (1996) Electrical and dynamic mechanical behavior of carbon black filled polymer composites. Eur Polym J 32:963–966CrossRefGoogle Scholar
  64. 64.
    Grunlan JC, Gerberich WW, Francis LF (1999) Electrical and mechanical property transitions in carbon-filled poly(vinylpyrrolidone). J Mater Res 14:4132–4135CrossRefGoogle Scholar
  65. 65.
    Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Tech 21:299–313CrossRefGoogle Scholar
  66. 66.
    Zhang MY, Jia WT, Chen XF (1996) Influences of crystallization histories on PTC/NTC effects of PVDF/CB composites. J Appl Polym Sci 62:743–747CrossRefGoogle Scholar
  67. 67.
    Huang JC, Wu CL (2000) Processability, mechanical properties, and electrical conductivities of carbon black-filled ethylene-vinyl acetate copolymers. Adv Polym Technol 19:132–139CrossRefGoogle Scholar
  68. 68.
    Grill A (1999) Electrical and optical properties of diamond-like carbon. Thin Solid Films 355–356:189–193CrossRefGoogle Scholar
  69. 69.
    Chen Q, Wang L-X, Zhang Z, Yang J, Lin Z (1996) Epitaxially oriented growth of diamond on silicon by hot filament chemical vapor deposition. Appl Phys Lett 68(2):176–178CrossRefGoogle Scholar
  70. 70.
    Yadav BC, Kumar R (2008) Structure, properties and applications of fullerenes. Int J Nanotech Appl 2:15–24Google Scholar
  71. 71.
    Goel A, Howard JB, Sande JBV (2004) Size analysis of single fullerene molecules by electron microscopy. Carbon 42:1907–1915CrossRefGoogle Scholar
  72. 72.
    Sengupta R, Bhattacharya M, Bandyopadhyay S, Bhowmick AK (2011) A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Prog Polym Sci 36:638–670CrossRefGoogle Scholar
  73. 73.
    Guo N, Leu MC (2012) Effect of different graphite materials on the electrical conductivity and flexural strength of bipolar plates fabricated using selective laser sintering. Int J Hydrogen Energy 37:3558–3566CrossRefGoogle Scholar
  74. 74.
    Matsumura K, Takahashi A, Tsukamoto J (1985) Structure and electrical conductivity of graphite fibers prepared by pyrolysis of cyanoacetylene. Synth Met 11:9–20CrossRefGoogle Scholar
  75. 75.
    Sadasivuni KK, Ponnamma D, Thomas S, Grohens Y (2014) Evolution from graphite to graphene elastomer composites. Prog Polym Sci 39:749–780CrossRefGoogle Scholar
  76. 76.
    Kraus G (1965) Interactions of elastomers and reinforcing fillers. Rubb Chem Technol 38:1070–1114CrossRefGoogle Scholar
  77. 77.
    Gent AN (1978) Science and technology of rubber. In: Erich FR(ed). Academic Press, Inc., New YorkGoogle Scholar
  78. 78.
    Wolff S, Wang M (1993) In: Donnet JB, Bansal RC, Wang M(ed) Carbon black science and technology. Marcel Dekker Inc., p 289Google Scholar
  79. 79.
    Janzen J (1975) On the critical conductive filler loading in antistatic composites. J Appl Phys 46:966–969CrossRefGoogle Scholar
  80. 80.
    Bigg DM, Bradhury JE (1981) Conducting polymers. In: Seymour RB (ed) Polymer science and technology, vol 15. Plenum, New York, p 13Google Scholar
  81. 81.
    Medalia AI (1986) Electrical conduction in carbon black composites. Rubb Chem Technol 59:432–454CrossRefGoogle Scholar
  82. 82.
    Nelson JR (1986) Morphology of electrically conductive grades of carbon black. Carbon 24:115–121CrossRefGoogle Scholar
  83. 83.
    Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G (2012) Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder Technol 221:351–358CrossRefGoogle Scholar
  84. 84.
    Sánchez-González J, Macías-García A, Alexandre-Franco MF, Gómez-Serrano V (2005) Electrical conductivity of carbon blacks under compression. Carbon 43:741–747CrossRefGoogle Scholar
  85. 85.
    Fitzer E, Frons W, Heine M (1986) Optimization of stabilization and carbonization treatment of PAN fibres and structural characterization of the resulting carbon fibres. Carbon 24:387–395CrossRefGoogle Scholar
  86. 86.
    Feng L, Ning Xie, Zhong J (2014) Carbon nanofibers and their composites: a review of synthesizing, properties and applications. Materials 7:3919–3945PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/ polymer conductive composites. Carbon 47:2–22CrossRefGoogle Scholar
  88. 88.
    Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67:1709–1718CrossRefGoogle Scholar
  89. 89.
    Rao C (2005) Natotubes and nanowires. Royal Society of Chemistry, CambridgeGoogle Scholar
  90. 90.
    Kang I, Heung YY, Kim JH, Lee JW, Gollapudi R, Subramaniam S, Narasimhadevara S, Hurd D, Kirikera GR, Shanov V, Schulz MJ, Shi D, Boerio J, Mall S, Ruggles-Wren M (2006) Introduction to carbon nanotube and nanofiber smart materials. Composites Part B Eng 37(6):382–394CrossRefGoogle Scholar
  91. 91.
    Baughman RH, Zakhidov AA, Heer WAD (2002) Carbon nanotubes–the route toward applications. Science 297(5582):787–792PubMedCrossRefGoogle Scholar
  92. 92.
    Iijima S (2002) Carbon nanotubes: past, present, and future. Phys B 323:1–5CrossRefGoogle Scholar
  93. 93.
    Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61(13):1899–1912CrossRefGoogle Scholar
  94. 94.
    Dillon AC, Yudasaka M, Dresselhaus MS (2004) Employing raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials. J Nanosci Nanotechnol 4(7):691–703PubMedCrossRefGoogle Scholar
  95. 95.
    Baddour C, Briens C (2005) Carbon nanotube synthesis: a review. Int J Chem React Eng 3(1):1–20Google Scholar
  96. 96.
    Sundaray B, Subramanian V, Natarajan TS, Krishnamurthy K (2006) Electrical conductivity of a single electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube nanocomposite. Appl Phys Lett 88:143114CrossRefGoogle Scholar
  97. 97.
    Deng J, Ding X, Zhang W, Peng Y, Wang J, Long X et al (2002) Carbon nanotube-polyaniline hybrid materials. Eur Polym J 38:2497–2501CrossRefGoogle Scholar
  98. 98.
    Long Y, Chen Z, Zhang X, Zhang J, Liu Z (2004) Synthesis and electrical properties of carbon nanotube polyaniline composites. Appl Phys Lett 85:1796–1798CrossRefGoogle Scholar
  99. 99.
    Wu TM, Lin SH (2006) Characterization and electrical properties of polypyrrole/multiwalled carbon nanotube composites synthesized by in situ chemical oxidative polymerization. J Polym Sci Part B Polym Phys 44:1413–1418CrossRefGoogle Scholar
  100. 100.
    Karim MR, Lee CJ, Chowdhury AMS, Nahar N, Lee MS (2007) Radiolytic synthesis of conducting polypyrrole/carbon nanotube composites. Mater Lett 61:1688–1692CrossRefGoogle Scholar
  101. 101.
    Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83:2928–2930CrossRefGoogle Scholar
  102. 102.
    Karim MR, Lee CJ, Lee MS (2006) Synthesis and characterization of conducting polythiophene/carbon nanotubes composites. J Polym Sci Part A: Polym Chem 44:5283–5290CrossRefGoogle Scholar
  103. 103.
    Grimes CA, Mungle C, Kouzoudis D, Fang S, Eklund PC (2000) The 500 MHz to 5.50 GHz complex permittivity spectra of single-wall carbon nanotube-loaded polymer composites. Chem Phys Lett 319:460–464CrossRefGoogle Scholar
  104. 104.
    Andres PL, Ramirez R, Verges JA (2008) Strong covalent bonding between two graphene layers. Phys Rev B 77:045403/1–045403/15Google Scholar
  105. 105.
    Nemes-Incze P, Osvatha Z, Kamarasb K, Biro LP (2008) Anomalies in thickness measurements of graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon 46:1435–1442CrossRefGoogle Scholar
  106. 106.
    Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL (2008) Ultrahigh electron mobility in suspended graphene. Solid State Commun 146:351–355CrossRefGoogle Scholar
  107. 107.
    Gomez-Navarro C, Weitz RT, Bittner AM, Scolari M, Mews A, Burghard M, Kern K (2007) Electronic transport properties of individual chemically reduced graphene oxide sheets. Nano Lett 7:3499–3503PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Wu ZS, Ren W, Gao L, Zhao J, Chen Z, Liu B, Tang D, Yu B, Jiang C, Cheng HM (2009) Synthesis of graphene sheets with high electrical conductivity and good thermal stability by hydrogen arc discharge exfoliation. ACS Nano 3:411–417PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Ansari S, Giannelis EP (2009) Functionalized graphene sheet—poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci Part B Polym Phys 47:888–897CrossRefGoogle Scholar
  110. 110.
    Du J, Zhao L, Zeng Y, Zhang L, Li F, Liu P, Liu C (2011) Comparison of electrical properties between multi-walled carbon nanotube and graphene nanosheet/high density polyethylene composites with a segregated network structure. Carbon 49:1094–1100CrossRefGoogle Scholar
  111. 111.
    Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141CrossRefGoogle Scholar
  112. 112.
    Huang J-C (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21(4):299–313CrossRefGoogle Scholar
  113. 113.
    Spahr ME, Gilardi R, Bonacchi D (2013) Carbon black for electrically conductive polymer applications. Encyclopedia of polymers and composites. Springer, Berlin.  https://doi.org/10.1007/978-3-642-37179-0_32-1Google Scholar
  114. 114.
    Sanjinés R, Abad MD, Vâju C, Smajda R, Mionić M, Magrez A (2011) Electrical properties and applications of carbon based nanocomposite materials: an overview. Surf Coat Technol 206:727–733CrossRefGoogle Scholar
  115. 115.
    Spitalsky Z, Tasisb D, Papagelis K, Galiotis C (2010) Carbon nanotube–polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35:357–401CrossRefGoogle Scholar
  116. 116.
    Mutiso RM, Winey KI (2015) Electrical properties of polymer nanocomposites containingrod-like nanofillers. Prog Polym Sci 40:63–84CrossRefGoogle Scholar
  117. 117.
    Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41:1345–1367CrossRefGoogle Scholar
  118. 118.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  119. 119.
    Khanam PN, Ponnamma D, AL-Madeed MA (2015) Electrical properties of graphene polymer nanocomposites. In: Sadasivuni KK et al (eds) Graphene-based polymer nanocomposites in electronics. Springer series on polymer and composite materials. Springer International Publishing, Switzerland, pp 25–47.  https://doi.org/10.1007/978-3-319-13875-6_2Google Scholar
  120. 120.
    Rahaman M, Chaki TK, Khastgir D (2011) Development of high performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure. J Mater Sci 46(11):3989–3999CrossRefGoogle Scholar
  121. 121.
    Sohi NJS, Rahaman M, Khastgir D (2011) Dielectric property and electromagnetic interference shielding effectiveness of ethylene vinyl acetate based conductive composites: effect of different type of carbon fillers. Polym Compos 32:1148–1154CrossRefGoogle Scholar
  122. 122.
    Nayak L, Rahaman M, Khastgir D, Chaki TK (2011) Thermal and electrical properties of carbon nanotubes based polysulfone nanocomposites. Polym Bull 67:1029–1044CrossRefGoogle Scholar
  123. 123.
    Rahaman M, Chaki TK, Khastgir D (2011) High performance EMI shielding materials based on short carbon fiber filled ethylene vinyl acetate copolymer, acrylonitrile butadiene copolymer, and their blends. Polym Compos 32(11):1790–1805CrossRefGoogle Scholar
  124. 124.
    Ram R, Rahaman M, Khastgir D (2014) Mechanical, electrical and dielectric properties of polyvinylidene fluoride/short carbon fiber composites with low electrical percolation threshold. J Appl Polym Sci 131(3):39866CrossRefGoogle Scholar
  125. 125.
    Huang J-C (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21:299–313CrossRefGoogle Scholar
  126. 126.
    Li ZH, Zhang J, Chen SJ (2008) Effects of carbon blacks with various structures on vulcanization and reinforcement of filled ethylene-propylene-diene rubber. eXPRESS Polym Lett 2(10):695–704CrossRefGoogle Scholar
  127. 127.
    Rahaman M, Thomas SP, Hussein IA, De SK (2013) Dependence of electrical properties of polyethylene nanocomposites on aspect ratio of carbon nanotubes. Polym Compos 34:494–499CrossRefGoogle Scholar
  128. 128.
    Shehzad K, Dang Z-M, Ahmad MN, Sagar R-UrR, Farooq MU, Wang T-B (2013) Effects of carbon nanotubes aspect ratio on the qualitative and quantitative aspects of frequency response of electrical conductivity and dielectric permittivity in the carbon nanotube/polymer composites. Carbon 54:105–112CrossRefGoogle Scholar
  129. 129.
    Guo J, Liu Y, Prada-Silvy R, Tan Y, Azad S, Krause B, Pötschke P, Grady BP (2014) Aspect ratio effects of multi-walled carbon nanotubes on electrical, mechanical, and thermal properties of polycarbonate/MWCNT composites. J Polym Sci Part B Polym Phys 52:73–83CrossRefGoogle Scholar
  130. 130.
    Thomas SP, Abdullateef AA, Al-Harthi MA, Atieh MA, De SK, Rahaman M, Chaki TK, Khastgir D, Bandyopadhyay S (2012) Electrical properties of natural rubber nanocomposites: effect of 1-octadecanol functionalization of carbon nanotubes. J Mater Sci 47:3344–3349CrossRefGoogle Scholar
  131. 131.
    Jiang Mei-Juan, Dang Zhi-Min, Yao Sheng-Hong, Bai Jinbo (2008) Effects of surface modification of carbon nanotubes on the microstructure and electrical properties of carbon nanotubes/rubber nanocomposites. Chem Phys Lett 457:352–356CrossRefGoogle Scholar
  132. 132.
    Sulong AB, Muhamad N, Sahari J, Ramli R, Deros BM, Park J (2009) Electrical conductivity behaviour of chemical functionalized MWCNTs epoxy nanocomposites. Eur J Sci Res 29(1):13–21Google Scholar
  133. 133.
    Park O-K, Kim S-G, You N-H, Ku B-C, Hui D, Lee JH (2014) Synthesis and properties of iodo functionalized graphene oxide/polyimide nanocomposites. Compos B 56:365–371CrossRefGoogle Scholar
  134. 134.
    White S, DiDonna B, Mu M, Lubensky T, Winey K (2009) Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys Rev B 79:024301/1–024301/17Google Scholar
  135. 135.
    Khan SU, Pothnis JR, Kim J-K (2013) Effects of carbon nanotube alignment on electrical and mechanical properties of epoxy nanocomposites. Compos A 49:26–34CrossRefGoogle Scholar
  136. 136.
    Yousefi N, Gudarzi MM, Zheng QB, Aboutalebi SH, Sharif F, Kim JK (2012) Self alignment and high electrical conductivity of ultra large graphene oxide/polyurethane nanocomposites. J Mater Chem 22:12709–12717CrossRefGoogle Scholar
  137. 137.
    Dalmas F, Dendievel R, Chazeau L, Cavaille J, Gauthier C (2006) Carbon nanotube-filled polymer composites. Numerical simulation of electrical conductivity in three-dimensional entangled fibrous networks. Acta Mater 54:2923–2931CrossRefGoogle Scholar
  138. 138.
    Li C, Thostenson E, Chou T (2008) Effect of nanotube waviness on the electrical conductivity of carbon nanotube-based composites. Compos Sci Technol 68:1445–1452CrossRefGoogle Scholar
  139. 139.
    Kyrylyuk AV, van der Schoot P (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc Natl Acad Sci USA 105:8221–8226CrossRefGoogle Scholar
  140. 140.
    Sumita M, Sakata A, Asai S, Miyasaka K, Nakgawa H (1991) Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym Bull 25:265–271CrossRefGoogle Scholar
  141. 141.
    Sau KP, Chaki TK, Khastgir D (1998) Carbon fiber filled conductive composites based on nitrile rubber (NBR), ethylene propylene diene rubber (EPDM) and their blend. Polymer 39:6461–6471CrossRefGoogle Scholar
  142. 142.
    Sau KP, Chaki TK, Khastgir D (1997) Conductive rubber composites from different blends of ethylene-propylene-diene rubber and nitrile rubber. J Mater Sci 32:5717–5724CrossRefGoogle Scholar
  143. 143.
    Pöschke P, Dudkin SM, Alig I (2003) Dielectric spectroscopy on melt processed polycarbonate–multiwalled carbon nanotube composites. Polymer 44:5023–5030CrossRefGoogle Scholar
  144. 144.
    Mǐcǔsik M, Omastova M, Krupa I, Prokěs J, Pissis P, Logakis E et al (2009) A comparative study on the electrical and mechanical behaviour of multi-walled carbon nanotube composites prepared by diluting a masterbatch with various types of polypropylene. J Appl Polym Sci 113:2536–2551CrossRefGoogle Scholar
  145. 145.
    Paul DR, Newman S (eds) (1978) Polymer blends, vol 1, 2. Academic Press, Inc., New YorkGoogle Scholar
  146. 146.
    Sirkar AK, Lamond TG (1973) Carbon black transfer in blends of cis poly(butadiene) with other elastomers. Rubb Chem Technol 46:178–191CrossRefGoogle Scholar
  147. 147.
    Meyer J (1973) Glass transition temperature as a guide to selection of polymers suitable for PTC materials. Polym Eng Sci 13:462–468CrossRefGoogle Scholar
  148. 148.
    Sichel EK, Gittleman JI, Sheng P (1978) Transport properties of the composite material carbon-poly(vinyl chloride). Phys Rev B Condensed Mater B18:5712–5716CrossRefGoogle Scholar
  149. 149.
    Jeuskens G, Gielens JL, Geshef D, Deltour R (1987) The electrical conductivity of polymer blends filled with carbon-black. Eur Polym J 23:993–995CrossRefGoogle Scholar
  150. 150.
    Sirkar AK (1981) Softer conductive rubber compounds by elastomer blending. Rubb Chem Technol 54:820–834CrossRefGoogle Scholar
  151. 151.
    Voet A (1980) Temperature effect of electrical resistivity of carbon black filled polymers. Rubb Chem Technol 54:42–50CrossRefGoogle Scholar
  152. 152.
    Bhattacharya SK, Basu S, De SK (1980) Effect of temperature on the electrical conductivity of poly(vinyl chloride)–copper composites. J Appl Polym Sci 25:111–118CrossRefGoogle Scholar
  153. 153.
    Amin M, Hassan HH, Abdel-Bary EM (1974) Conductivity of carbon black-loaded styrene–butadiene rubber. J Polym Sci Polym Chem 12:2651–2657CrossRefGoogle Scholar
  154. 154.
    Abdel-Bary EM, Amin M, Hassan HH (1979) Factors affecting electrical conductivity of carbon black-loaded rubber. II. Effect of concentration and type of carbon black on electrical conductivity of SBR. J Polym Sci Polym Chem 17:2163–2172CrossRefGoogle Scholar
  155. 155.
    Amin M, Hassan HH, Abdel-Bary EM (1989) Influence of solvent penetration on the electrical conductance of pre-extended FEF carbon black-loaded rubbers. J Appl Polym Sci 37:1209–1219CrossRefGoogle Scholar
  156. 156.
    Allak HM, Brinkman AW, Woods J (1993) I-V characteristics of carbon black-loaded crystalline polyethylene. J Mater Sci 28:117–120CrossRefGoogle Scholar
  157. 157.
    Aminabhavi TM, Cassidy PE, Thomson CM (1990) electrical resistivity of carbon-black-loaded rubbers. Rubb Chem Technol 63:451–471CrossRefGoogle Scholar
  158. 158.
    Klason C, Kubat J (1975) Anomalous behavior of electrical conductivity and thermal noise in carbon black-containing polymers at Tg and Tm. J Appl Polym Sci 19:831–845CrossRefGoogle Scholar
  159. 159.
    Ghofraniha M, Saovey R (1988) Electrical conductivity of polymers containing carbon black. Polym Eng Sci 28:58–63CrossRefGoogle Scholar
  160. 160.
    Langley M (1973) Carbon fiber in engineering. McGraw Hill, LondonGoogle Scholar
  161. 161.
    Bhattacharya SK, Chaklader AC (1982) Review on metal-filled plastics. part1: electrical conductivity. Polym Plast Technol Eng 19:21–51CrossRefGoogle Scholar
  162. 162.
    He XJ, Du JH, Ying Z, Cheng HM (2005) Positive temperature coefficient effect in multiwalled carbon nanotube/high-density polyethylene composites. Appl Phys Lett 86:062112CrossRefGoogle Scholar
  163. 163.
    Rahaman M, Chaki TK, Khastgir D (2013) Control of the temperature coefficient of the DC resistivity in polymer-based composites. J Mater Sci 48:7466–7475CrossRefGoogle Scholar
  164. 164.
    Park S-J, Seo M-K, Lee J-R (2001) PTC/NTC behaviors of nanostructured carbon black-filled HDPE polymer composites. Carbon Sci 2(3&4):159–164Google Scholar
  165. 165.
    Feng J, Chan C-M (2000) Positive and negative temperature coefficient effects of an alternating copolymer of tetrafluoroethylene–ethylene containing carbon black-filled HDPE particles. Polymer 41:7279–7282CrossRefGoogle Scholar
  166. 166.
    Feng J, Chan C-M (2000) Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers. Polymer 41:4559–4565CrossRefGoogle Scholar
  167. 167.
    Saito S, Sasabe H, Nakajima T, Yada K (1968) Dielectric relaxation and electrical conduction of polymers as a function of pressure and temperature. J Polym Sci Part A-2 Polym Phys 6(7):1297–1315CrossRefGoogle Scholar
  168. 168.
    Pramanik PK, De SK, Saha TN, Khastgir D (1990) Pressure-sensitive electrically conductive nitrile rubber composites filled with particulate carbon black and short carbon fiber. J Mater Sci 25:3848–3853CrossRefGoogle Scholar
  169. 169.
    Akakabe M (1986) JP 61, 32, 913 [86, 32, 913] C1 HO 1B13/00 15 Feb. Appl 84/156, 099; 25 July 1984, 4 pGoogle Scholar
  170. 170.
    Bickley AC, Donnet G (1988) Eur. Pat. Appl. EP 283, 193 (C1 HO 1B1/24) 02 Nov. GB Appl 8719, 355, 21 April 1987, 10 pGoogle Scholar
  171. 171.
    Moshimo S, Nagayasu S, Yamaguch Y, Noguchi T, Nakajima M, Kakluchi H, Tanida K (1987) EP 207, 450 (CI HO1B1/24) 07 Jan. JP Appl 85/147, 160;03 July 185, 58 pGoogle Scholar
  172. 172.
    Das NC, Chaki TK, Khastgir D (2002) Effect of processing parameters, applied pressure and temperature on the electrical resistivity of rubber-based conductive composites. Carbon 40:807–816CrossRefGoogle Scholar
  173. 173.
    Rahaman M, Chaki TK, Khastgir D (2013) Polyaniline, ethylene vinyl acetate semi-conductive composites as pressure sensitive sensor. J Appl Polym Sci 128:161–168CrossRefGoogle Scholar
  174. 174.
    Rahaman M, Chaki TK, Khastgir D (2014) Polyaniline/ethylene vinyl acetate composites as dielectric sensor. Polym Eng Sci 54:1632–1639CrossRefGoogle Scholar
  175. 175.
    Mahmoud WE, El-Lawindy AMY, El-Eraki MH, Hassan HH (2007) Butadiene acrylonitrile rubber loaded fast extrusion furnace black as a compressive strain and pressure sensors. Sens Actuators A 136:229–233CrossRefGoogle Scholar
  176. 176.
    Agari Y, Ueda A, Nagai S (1991) Thermal conductivities of composites in several types of dispersion systems. J Appl Polym Sci 42:1665–1669CrossRefGoogle Scholar
  177. 177.
    Cembrola RJ (1982) The relationship of carbon black dispersion to electrical resistivity and vulcanizate physical properties. Polym Eng Sci 22:601–609CrossRefGoogle Scholar
  178. 178.
    Nakajima N, Harrell ER (1984) Contributions of elastomer behavior to mechanisms of carbon black dispersion. Rubb Chem Technol 57:153–167CrossRefGoogle Scholar
  179. 179.
    Li J, Ma PC, Chow WS, To CK, Tang BZ, Kim JK (2007) Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv Funct Mater 17:3207–3215CrossRefGoogle Scholar
  180. 180.
    Du F, Fischer JE, Winey KI (2003) Coagulation method for preparing single-walled carbon nanotube/poly(methyl methacrylate) composites and their modulus, electrical conductivity, and thermal stability. J Polym Sci, Part B: Polym Phys 41:3333–3338CrossRefGoogle Scholar
  181. 181.
    Kashiwagi T, Fagan J, Douglas J, Yamamoto K, Heckert A, Leigh S, Obrzut J, Du F, Lingibson S, Mu M, Winey KI, Haggenmueller R (2007) Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites. Polymer 48:4855–4866CrossRefGoogle Scholar
  182. 182.
    Bryning MB, Islam MF, Kikkawa JM, Yodh AG (2005) Very low conductivity threshold in bulk isotropic single-walled carbon nanotube–epoxy composites. Adv Mater 17:1186–1191CrossRefGoogle Scholar
  183. 183.
    Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube? Epoxy composites. Compos Sci Technol 64:2309–2316CrossRefGoogle Scholar
  184. 184.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube–epoxy composites. Polymer 44:5893–5899CrossRefGoogle Scholar
  185. 185.
    Pegel S, Pötschke P, Villmow T, Stoyan D, Heinrich G (2009) Spatial statistics of carbon nanotube polymer composites. Polymer 50:2123–2132CrossRefGoogle Scholar
  186. 186.
    Abdel-Bary EM, Amin M, Hassan HH (1977) Factors affecting electrical conductivity of carbon black-loaded rubber I. Effect of milling conditions and thermal-oxidative aging on electrical conductivity of HAF carbon black-loaded styrene–butadiene rubber. J Polym Sci Polym Chem 15:197–201CrossRefGoogle Scholar
  187. 187.
    Pramanik PK, Saha TN, Khastgir D (1992) Effect of some processing parameters on the resistivity of conductive nitrile rubber composites. Plast Rubb Compos Process Appl 17:179–185Google Scholar
  188. 188.
    Huang YY, Terentjev EM (2012) Dispersion of carbon nanotubes: mixing, sonication, stabilization, and composite properties. Polymers 4:275–295CrossRefGoogle Scholar
  189. 189.
    Kim S, Lee JW, Hong I-K, Lee S (2014) Electrical conductivity enhancement of polycarbonate/poly(styrene-co-acrylonitrile)/carbon nanotube composites by high intensity ultrasound. Macromol Res 22(2):154–159CrossRefGoogle Scholar
  190. 190.
    Fernandez DR, Marzocca AJ (1991) Analysis of resistivity in a rubber compound. Rubb Chem Technol 64:501–509CrossRefGoogle Scholar
  191. 191.
    Thomson CM, Besuden TW, Beumel LL (1988) Resistivity of rubber as a function of mold pressure. Rubb Chem Technol 61:828–841CrossRefGoogle Scholar
  192. 192.
    Nasr GM, Amin M, Osman HH, Badway MM (1989) Influence of hydrostatic pressure on the electrical properties of unvulcanized FEF-loaded SBR. J Appl Polym Sci 37:1327–1337CrossRefGoogle Scholar
  193. 193.
    Badawy MM, Nasr GM (1997) Effect of molding pressure on the electrical conductivity of conductive NBR/PVC composites. Polym Test 16:155–164CrossRefGoogle Scholar
  194. 194.
    Boonstra BB (1977) Resistivity of unvulcanized compounds of rubber and carbon black. Rubb Chem Technol 50:194–210CrossRefGoogle Scholar
  195. 195.
    Voet A, Sirkar AK, Mullens TJ (1969) Electrical properties of stretched carbon black loaded vulcanizates. Rubb Chem Technol 42:874–891CrossRefGoogle Scholar
  196. 196.
    Voet A, Morawaki JC (1974) Dynamic mechanical and electrical properties of vulcanizates at elongations up to sample rupture. Rubb Chem Technol 47:765–777CrossRefGoogle Scholar
  197. 197.
    Burton LC, Hwang K, Zhang T (1989) Dynamic electrical and electromechanical properties of carbon-black loaded rubber. Rubb Chem Technol 62:838–849CrossRefGoogle Scholar
  198. 198.
    Pramanik M, Saha TN, Khastagir D (1993) Effect of extensional strain on the resistivity of electrically conductive nitrile-rubber composites filled with carbon filler. J Mater Sci 28:3539–3546CrossRefGoogle Scholar
  199. 199.
    Hashem AA, Ghani AA, Eatah AI (1991) Effect of preextension on electrical conductivity and physicomechanical properties of butyl rubber (IIR) loaded with different types of carbon black. J Appl Polym Sci 42:1081–1085CrossRefGoogle Scholar
  200. 200.
    Amin M, Nasr GM, Hassan HH, Ei-Guiziri S, Abdem MA (1989) Investigation on the dependence of the electrical conductivity of FEF/SBR vulcanizates on the cyclic strain. Polym Bull 22:413–420CrossRefGoogle Scholar
  201. 201.
    Hasan HH, Khairy SA, El-Guiziri S, Abdel-Moneim HM (1991) Effect of tensile deformation on the electrical conductivity of SRF black-loaded SBR blend. J Appl Polym Sci 42:2879–2883CrossRefGoogle Scholar
  202. 202.
    Barrau S, Demont P, Peigney A, Laurent C, Lacabanne C (2003) DC and AC conductivity of carbon nanotubes-polyepoxy composites. Macromolecules 36:5187–5194CrossRefGoogle Scholar
  203. 203.
    McLachlan DS, Chiteme C, Park C, Wise KE, Lowther SE, Lillehei PT, Siochi EJ, Harrison JS (2005) AC and DC percolative conductivity of single wall carbon nanotube polymer composites. J Polym Sci Part B Polym Phys 43:3273–3287CrossRefGoogle Scholar
  204. 204.
    Elimat ZM (2006) AC electrical conductivity of poly(methyl methacrylate)/carbon black composite. J Phys D Appl Phys 39:2824–2828CrossRefGoogle Scholar
  205. 205.
    Jäger KM, McQueen DH, Tchmutin IA, Ryvkina NG, Klüppel M (2001) Electron transport and ac electrical properties of carbon black polymer composites. J Phys D Appl Phys 34:2699–2707CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mostafizur Rahaman
    • 1
  • Ali Aldalbahi
    • 1
  • Lalatendu Nayak
    • 2
  • Radhashyam Giri
    • 3
  1. 1.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Phillips Carbon Black Ltd.KolkataIndia
  3. 3.Central Institute of Plastics Engineering and TechnologyAhmedabadIndia

Personalised recommendations