Advertisement

Mechanical Properties of Carbon-Containing Polymer Composites

  • K. Sasikumar
  • N. R. Manoj
  • T. Mukundan
  • Mostafizur Rahaman
  • Dipak Khastgir
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

The carbon particles in micro- and nanometric size are the prominently used as particulate filler in polymer matrix to improve mechanical properties. The carbon black is the most widely used cost-effective filler, but require higher loading levels to get optimum mechanical properties. Researchers all over the world are investigating the various nanoforms of carbon like Fullerenes, Carbon nanofibres, Carbon nanotubes, Nano diamond and Graphene as fillers in polymer matrix to improve mechanical properties at low loading levels. These nano-sized carbon particles, impart additional properties like improved electrical conductivity, reduced friction, higher heat dissipation and improved hydrophobic nature, etc., which makes them preferred candidate despite of higher cost. New methods for functionalization and dispersion are attempted to capitalize the full potential of these nanomaterials. This chapter gives a bird’s eye view of progress made in the preparation of these nanocomposites, advanced functionalization, and dispersion methods, and their impact on the mechanical properties of polymer nanocomposites. The obstacles in converting lab-scale achievements into large-scale applications also discussed and suitable suggestions are given.

Keywords

Mechanical properties Carbon Polymers Nanoparticles Graphene 

References

  1. 1.
    Donnet JB, Voet A, Dekker (1976) Carbon black, physics, chemistry, and elastomer reinforcement. New YorkGoogle Scholar
  2. 2.
    White JL (1995) Rubber processing: technology, materials, and principles. Hanser Publishers, MunichGoogle Scholar
  3. 3.
    Hajji P, David L, Gerard JF, Pascault JP, Vigier G (1999) Synthesis, structure, and morphology of polymer–silica hybrid nanocomposites based on hydroxyethyl methacrylate. J Polym Sci Part B Polym Phys 37(22):3172–3187CrossRefGoogle Scholar
  4. 4.
    Park S J (1999). In: Hsu JP (ed) Interfacial forces and field: theory and applications, Dekker, New York, p 385Google Scholar
  5. 5.
    Zhang Z, Zhang G, Li D, Liu Z, Chen X (1999) Chlorohydrin water-swellable rubber compatibilized by an amphiphilic graft copolymer. II. Effects of PVA-g-PBA and CPA on water-swelling behaviors. J Appl Polym Sci 74:3145–3152CrossRefGoogle Scholar
  6. 6.
    Perez LD, Giraldo LF, Brostow W, Lopez B (2007) Poly (methyl acrylate) plus mesoporous silica nanohybrids: mechanical and thermophysical properties. E-polymers, 29:324–334Google Scholar
  7. 7.
    Zhou XW, Zhu YF, Liang J (2007) Preparation and properties of powder styrene–butadiene rubber composites filled with carbon black and carbon nanotubes. Mater Res Bull 42:456–464CrossRefGoogle Scholar
  8. 8.
    Ibarra L, Rodrıguez A, Mora I (2007) Ionic nanocomposites based on XNBR-OMg filled with layered nanoclays. Eur Polym J 43:753–761CrossRefGoogle Scholar
  9. 9.
    Miyagawa H, Drzal LT (2004) Thermo-physical and impact properties of epoxy nanocomposites reinforced by single-wall carbon nanotubes. Polymer 45:5163–5170CrossRefGoogle Scholar
  10. 10.
    Schadler LS, Giannaris SC, Ajayan PM (1999) Load transfer in carbon nanotube epoxy composites. Appl Phys Lett 73:3842–3844CrossRefGoogle Scholar
  11. 11.
    Bansal RC, Donnet JB, Stoeckli F (1988) Active carbon. Marcel Dekker, New York and BaselGoogle Scholar
  12. 12.
    Wang MJ, Wolff S (1993) Carbon black science and technology. In: Donnet JB, Bansal RC, Wang MJ (eds), Dekker, NewYork, p 229Google Scholar
  13. 13.
    Mather PJ, Thomas KM (1997) Carbon black/ high density polyethylene conducting composite materials. J Mater Sci 32:401–407CrossRefGoogle Scholar
  14. 14.
    Ghosh P, Chakrabarti A (2000) Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. Eur Polym J 36:1043–1054CrossRefGoogle Scholar
  15. 15.
    Katbab AA, Nazockdast H, Bazgir S (2000) Carbon black-reinforced dynamically cured EPDM/PPThermoplastic elastomers. I. Morphology, rheology, and dynamic mechanical properties. J Appl Polym Sci 75:1127–1137CrossRefGoogle Scholar
  16. 16.
    Hwang J, Muth J, Ghosh T (2007) Electrical and mechanical properties of carbon-black-filled, electrospun nanocomposite fiber webs. J Appl Polym Sci 104:2410–2417CrossRefGoogle Scholar
  17. 17.
    Liang JZ, Yang QQ (2009) Mechanical properties of carbon black-filled high-density polyethylene antistatic composites. J Reinf Plasto Compos 28–3:295–304CrossRefGoogle Scholar
  18. 18.
    Sau KP, Chaki TK, Khastgir D (1999) Electrical and mechanical properties of conductingcarbon black filled composites based on rubberand rubber blends. J Appl Polym Sci 71:887–895CrossRefGoogle Scholar
  19. 19.
    King JA, Tucker KW, Vogt BD, Weber EH, Quan CL (1999) Electrically and thermally conductive nylon 6,6. Polym Compos 20(5):643–654CrossRefGoogle Scholar
  20. 20.
    Zheng G, Wu J, Wang W, Pan C (2004) Characterizations of expanded graphite/polymer composites prepared by in situ polymerization. Carbon 42:2839–2847CrossRefGoogle Scholar
  21. 21.
    Hontoria-Lucas C, Lopez-Peinado AJ, Lopez-Gonzalez JdD, Rojas-Cervantes ML, Martın-Aranda RM (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592CrossRefGoogle Scholar
  22. 22.
    Lerf A, He H, Forster M, Klinowski J (1998) Structure of graphite oxide revisited. J Phys Chem B 102:4477–4482CrossRefGoogle Scholar
  23. 23.
    Etmimi HM, Tonge MP, Sanderson RD (2011) Synthesis and characterization of polystyrene-graphite nanocomposites via surface RAFT-mediated miniemulsion polymerization. J Polym Sci Part A Polym Chem 49:1621–1632CrossRefGoogle Scholar
  24. 24.
    Cao NZ, Shen WC, Wen SZ, Liu YJ, Wang ZD, Inagaki M (1996) The factors influencing the porous structure of expanded graphite. Mater Sci Eng (Chin) 14:22–26Google Scholar
  25. 25.
    Kalaitzidou K, Fukushima H, Drzal LT (2007) A new compounding method for exfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos Sci Technol 67:2045–2051CrossRefGoogle Scholar
  26. 26.
    Zheng W, Wong SC (2003) Electrical conductivity and dielectric properties of PMMA/expanded graphite composites. Compos Sci Technol 63:225–235CrossRefGoogle Scholar
  27. 27.
    Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46:806–817CrossRefGoogle Scholar
  28. 28.
    Yasmin A, Daniel IM (2004) Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 45:8211–8219CrossRefGoogle Scholar
  29. 29.
    Nierengarten J-F, Guttierez-Nava M, Zhang S, Masson P, Oswald L, Bourgogne C (2004) Fullerene-containing macromolecules for materials science applications. Carbon 42:1077–1083CrossRefGoogle Scholar
  30. 30.
    Tayfun U, Kanbur Y, Abaci U, Guney HY, Bayramli E (2015) Mechanical, flow and electrical properties of thermoplasticpolyurethane/fullerene composites: Effect of surface modification offullerene. Compos Part B Eng 80:101–107CrossRefGoogle Scholar
  31. 31.
    Rafiee MA, Yavari F, Rafiee J, Koratkar N (2011) Fullerene–epoxy nanocomposites-enhanced mechanicalproperties at low nanofiller loading. J Nanopart Res 13:733–737CrossRefGoogle Scholar
  32. 32.
    Pikhurov DV, Zuev VV (2013) The effect of Fullerene C60 on the mechanical and dielectrical behavior of epoxy resins at low loading. Nanosyst Phys Chem Math 4(6):834–843Google Scholar
  33. 33.
    Okonkwo AO, Jagadale P, Herrera JEG, Hadjiev VG, Saldana JM, Tagliaferro A, Hernandez FCR (2015) High-toughness/low-friction ductile epoxy coatings reinforced with carbon nanostructures. Polym Test 47:113–119CrossRefGoogle Scholar
  34. 34.
    Pikhurov DV, Zuev VV (2016) The study of mechanical and tribological performance of fulleroid materials filled PA6 composites. Lubricants 4:13CrossRefGoogle Scholar
  35. 35.
    Calleja FJB, Giri L (1996) Structure and mechanical properties ofpolyethylene-fullerene composites. J Mater Sci 31:5153–5157CrossRefGoogle Scholar
  36. 36.
    Ogasawara T, Ishida Y, Kasai T (2009) Mechanical properties of carbon fiber/fullerene-dispersed epoxy composites. Compos Sci Technol 69:2002–2007CrossRefGoogle Scholar
  37. 37.
    Mochalin VN, Shenderova O, Ho D, Gogotsi Y (2012) The properties and applications of nanodiamonds. Nat Nanotechnol 7(1):11–23CrossRefGoogle Scholar
  38. 38.
    Shenderova O, Tyler T, Cunningham G, Ray M, Walsh J, Casulli M, Hens S, McGuire G, Kuznetsov V, Lipa S (2007) Nanodiamond and onion-like carbon polymer nanocomposites. Diam Relat Mater 16:1213–1217CrossRefGoogle Scholar
  39. 39.
    Shenderova OA, Gruen DM (2006) Ultrananocrystalline diamond: synthesis, properties and applications. William Andrew Publishing, New YorkGoogle Scholar
  40. 40.
    Chou CC, Lee SH (2010) Tribological behavior of nanodiamond-dispersed lubricants on carbon steels and aluminium alloy. Wear 269:757–762CrossRefGoogle Scholar
  41. 41.
    Osswald S, Yushin G, Mochalin V, Kucheyev SO, Gogotsi Y (2006) Control of sp2/sp3 carbon ratio and surface chemistry of nanodiamond powders by selective oxidation in air. J Am Chem Soc 128(35):11635–11642PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Osswald S, Havel M, Mochalin V, Yushin G, Gogotsi Y (2008) Increase of nano diamond crystal size by selective oxidation. Diamond Relat Mater 17(7–10):1122–1126CrossRefGoogle Scholar
  43. 43.
    Steenackers M, Lud SQ, Niedermeier M, Bruno P, Gruen DM, Feulner P, Stutzmann M, Garrido JA, Jordan R (2007) Structured polymer grafts on diamond. J Am Chem Soc 129:15655–15661PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Zhao YQ, Lau KT, Kim JK, Xu CL, Zhao DD, Li HL (2010) Nanodiamond/poly (lactic acid) nanocomposites: effect of nanodiamond on structure and properties of poly (lactic acid). Compos Part B Eng 41:646–653CrossRefGoogle Scholar
  45. 45.
    Barnard AS, Sternberg M (2007) Crystallinity and surface electrostatics of diamond nanocrystals. J Mater Chem 17(45):4811–4819CrossRefGoogle Scholar
  46. 46.
    Krüger A, Kataoka F, Ozawa M, Fujino T, Suzuki Y, Aleksenskii AE (2005) Unusually tight aggregation in detonation nanodiamond: identification and disintegration. Carbon 43(8):1722–1730CrossRefGoogle Scholar
  47. 47.
    Behler KD, Stravato A, Mochalin V, Korneva G, Yushin G, Gogotsi Y (2009) Nanodiamond-polymer composite fibers and coatings. ACS Nano 3–2:363–369CrossRefGoogle Scholar
  48. 48.
    Roumeli E, Pavlidou E, Avgeropoulos A, Vourlias G, Bikiaris DN, Chrissafis K (2014) Factors controlling the enhanced mechanical and thermal properties of nanodiamond-reinforced cross-linked high density polyethylene. J Phys Chem B 118:11341–11352PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Zhang Q, Naito K, Tanaka Y, Kagawa Y (2008) Grafting polyimides from nanodiamonds. Macromolecules 41:536–538CrossRefGoogle Scholar
  50. 50.
    Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly(vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44:4415–4421CrossRefGoogle Scholar
  51. 51.
    Zhai YJ, Wang ZC, Huang W, Huang JJ, Wang YY, Zhao YQ (2011) Improved mechanical properties of epoxy reinforced by low content nano diamond powder. Mat Sci Eng A Struct 528:7295–7300CrossRefGoogle Scholar
  52. 52.
    Guo H, Sheng H, Peng X, Yu X, Naito K, Qu X, Zhang Q (2014) Preparation and mechanical properties of epoxy/diamond nanocomposites. Polym Compos 35:2144–2149CrossRefGoogle Scholar
  53. 53.
    Neitzel I, Mochalin V, Knoke I, Palmese GR, Gogotsi Y (2011) Mechanical properties of epoxy composites with high contents of nanodiamond. Compos Sci Technol 71:710–716CrossRefGoogle Scholar
  54. 54.
    Zhou ZP (2009) Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer 50(13):2999–3006CrossRefGoogle Scholar
  55. 55.
    Ma H, Zeng J, Mary LR, Kumar S, Schiraldi DA (2003) Processing, structure, and properties of fibers from polyester/carbon nanofiber composites. Compos Sci Technol 63:1617–1628CrossRefGoogle Scholar
  56. 56.
    Tong X, Chen Y, Cheng H (2005) Influence of carbon nanofiber addition on mechanical properties and crystallization behavior of polypropylene. J Mater Sci Technol 21(5):686–690Google Scholar
  57. 57.
    Park JH, Lee SC (2016) Crystallization kinetics and mechanical properties of poly(lactic acid)/carbon nanofiber composites. Text Sci Eng 53:55–61CrossRefGoogle Scholar
  58. 58.
    Bal S (2010) Experimental study of mechanical and electrical properties of carbon nanofiber/ epoxy composites. J Mater Des 31(5):2406–2413.  https://doi.org/10.1016/j.matdes.2009.11.058CrossRefGoogle Scholar
  59. 59.
    Lafdi K, Fox W, Matzek M, Yildiz E (2008) Effect of carbon nanofiber-matrix adhesion on polymeric nanocomposite properties—Part II. J Nano mater, Article ID 310126, p 8.  https://doi.org/10.1155/2008/310126CrossRefGoogle Scholar
  60. 60.
    Danni N, Sasikumar T (2016) Characterization of electrospun carbon nanofiber mat reinforced polymer composites using ultra-sonic scanning method. Dig J Nanomater Biostruct 11(1):141–148Google Scholar
  61. 61.
    Zhang D, Zhao Y, Cabrera E, Zhao Z, Castro JM, Lee LJ (2016) Improved sand erosion resistance and mechanical properties of multifunctional carbon nanofiber nanopaper enhanced glass fiber/epoxy composites. SPE ANTEC Indianap, 411–415Google Scholar
  62. 62.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductivecomposites. Carbon 47:2–22CrossRefGoogle Scholar
  63. 63.
    Kingsuk M, Dipiti P, Dhannu L, Kanik R, Gyanesh NM (2004) Synthesis of coiled/straight carbon nanofibers by catalystic chemical vapor deposition. Carbon 42:3251–3272CrossRefGoogle Scholar
  64. 64.
    Khattab A, Liu C, Chirdon W, Hebert C (2012) Mechanical and thermal characterization of carbon nanofiber reinforced low-density polyethylene composites. J Thermoplast Compos 26(7):954–967CrossRefGoogle Scholar
  65. 65.
    Guadagno L, Raimondo M, Vittoria V, Vertuccio L, Lafdi K, De VB, Lamberti P, Spinelli G, Tucci V (2013) The role of carbon nanofiber defects onthe electrical and mechanical properties of CNF-based resins. Nanotechnology 24:305704PubMedCrossRefGoogle Scholar
  66. 66.
    Dhakate SR, Chaudhary A, Gupta A, Pathak AK, Singh BP, Subhedara KM, Yokozekib T (2016) Excellent mechanical properties of carbon fiber semi-aligned electrospun carbon nanofiber hybrid polymer composites. RSC Adv 6:36715–36722CrossRefGoogle Scholar
  67. 67.
    Meyyappan M (2005) Carbon nanotube: science and applications. CRC Press, FloridaGoogle Scholar
  68. 68.
    O’Connell MJ (ed) (2006) Carbon nanotubes—properties and applications. Taylor and Francis, Boca RatonGoogle Scholar
  69. 69.
    Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRefGoogle Scholar
  70. 70.
    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San DiegoGoogle Scholar
  71. 71.
    Yu MF, Lourie O, Dyer M, Moloni K, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multi-walled carbon nanotubes under tensile load”. Science 287:637–639PubMedCrossRefGoogle Scholar
  72. 72.
    Lau KT, Hui D (2002) The revolutionary creation of new advanced materials—carbon nanotube composites. Compos Part B Eng 33:263–277CrossRefGoogle Scholar
  73. 73.
    Rahul MC, Ghassemieh E (2012) Optimized process for the inclusion of carbon nanotubes in elastomers with improved thermal and mechanical properties. J Appl Polym Sci 124:4993–5001Google Scholar
  74. 74.
    Bokobza L (2012) Multiwall carbon nanotube-filled natural rubber: electrical and mechanical properties. Express Polym Lett 6(3):213–223CrossRefGoogle Scholar
  75. 75.
    Wang W, Ciselli P, Kuznetsov E, Peijs T, Barber AH (2008) Effective reinforcement in carbon nanotube–polymer composites. Philos Trans R Soc A 366:1613–1626CrossRefGoogle Scholar
  76. 76.
    Kim MT, Park H, Hui D, Rhee KY (2011) Carbon nanotube modification using gum arabic and its effect on the dispersion and tensile properties of carbon nanotubes/epoxy nanocomposites. J Nanosci Nanotechnol 11:7369–7373PubMedCrossRefGoogle Scholar
  77. 77.
    Tugrul Seyhan A, Gojny FH, Tanoglu M, Schulte K (2007) Critical aspects related to processing of carbon nanotube/unsaturated thermoset polyester nanocomposites. Eur Polym J 43:374–379CrossRefGoogle Scholar
  78. 78.
    Jagtap BS, Ratna D (2013) Novel method of dispersion of multiwalled carbon nanotubes in a flexible epoxy matrix. J Appl Polym Sci 130:2610–2618CrossRefGoogle Scholar
  79. 79.
    Xiao KQ, Zhang LC, Zarudi I (2007) Mechanical and rheological properties of carbon nanotube-reinforced polyethylene composites. Compos Sci Technol 67:177–182CrossRefGoogle Scholar
  80. 80.
    Basuli U, Chaki TK, Chattopadhyay S, Sabharwal S (2010) Thermal and mechanical properties of polymer-nanocomposites based on ethylene methyl acrylate and multiwalled carbon nanotube. Polym Compos 31:1168–1178Google Scholar
  81. 81.
    Chou WJ, Wang CC, Chen CY (2008) Characteristics of polyimide-based nanocomposites containing plasma-modified multi-walled carbon nanotubes. Compos Sci Technol 68:2208–2213CrossRefGoogle Scholar
  82. 82.
    Das A, Stockelhuber KW, Jurk R, Saphiannikova M, Fritzsche J, Lorenz H, Kluppel M, Heinrich G (2008) Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene–butadiene and butadiene rubber blends. Polymer 49:5276–5283CrossRefGoogle Scholar
  83. 83.
    Yang K, Gu M, Guo Y, Pan X, Mu G (2009) Effects of carbon nanotube functionalization on the mechanical and thermal properties of epoxy composites. Carbon 47:1723–1737CrossRefGoogle Scholar
  84. 84.
    Kim JA, GiSeong D, Kang TJ, Youn JR (2006) Effects of surface modification on rheological and mechanical properties of CNT/epoxy composites. Carbon 44:1898–1905CrossRefGoogle Scholar
  85. 85.
    Jiang X, Bin Y, Matsuo M (2005) Electrical and mechanical properties of polyimide–carbon nanotubescomposites fabricated by in situ polymerization. Polymer 46:7418–7424CrossRefGoogle Scholar
  86. 86.
    Guo P, Chen X, Gao X, Song H, Shen H (2007) Fabrication and mechanical properties of well-dispersed multiwalled carbon nanotubes/epoxy composites. Compos Sci Technol 67:3331–3337CrossRefGoogle Scholar
  87. 87.
    Yu A, Hu H, Bekyarova E, Itkis ME, Gao J, Zhao B, Haddon RC (2006) Incorporation of highly dispersed single-walled carbon nanotubes in a polyimide matrix. Compos Sci Technol 66:1190–1197CrossRefGoogle Scholar
  88. 88.
    Gojny FH, Schulte K (2004) Functionalisation effect on the thermo-mechanical behavior of multi-wall carbon nanotube/epoxy-composites. Compos Sci Technol 64:2303–2308CrossRefGoogle Scholar
  89. 89.
    Gojny FH, Wichmann MHG, Fiedler B, Schulte K (2005) Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos Sci Technol 65:2300–2313CrossRefGoogle Scholar
  90. 90.
    Jiang Q, Wang X, Zhu Y, Hui D, Qiu Y (2014) Mechanical, electrical and thermal properties of aligned carbon nanotube/polyimide composites. Compos Part B Eng 56:408–412CrossRefGoogle Scholar
  91. 91.
    Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H (2004) Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and its blends with acrylonitrile/butadiene/styrene. Polymer 45:739–748CrossRefGoogle Scholar
  92. 92.
    Frogley MD, Ravich D, Wagner HD (2003) Mechanical properties of carbon nanoparticle-reinforced elastomers. Compos Sci Technol 63:1647–1654CrossRefGoogle Scholar
  93. 93.
    Sahoo BP, Naskar K, Tripathy DK (2016) Multiwalled carbon nanotube-filled ethylene acrylic elastomer nanocomposites: influence of ionic liquids on the mechanical, dynamic mechanical, and dielectric properties. Polym Compos 37:2568–2580CrossRefGoogle Scholar
  94. 94.
    Poikelispaa M, Das A, Dierkes W, Vuorinen J (2013) The effect of partial replacement of carbon black by carbon nanotubes on the properties of natural rubber/butadiene rubber compound. J Appl Polym Sci 130:3153–3160CrossRefGoogle Scholar
  95. 95.
    Sasikumar K, Manoj NR, Mukundan T, Khastgir D (2014) Design of XNBR nanocomposites for underwater acoustic sensor applications: effect of MWNT on dynamic mechanical properties and morphology. J Appl Polym Sci 131:40752CrossRefGoogle Scholar
  96. 96.
    Kuan HC, Ma C-CM, Chang W-P, Yuen S-M, Wu H-H, Lee T-M (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol. 65:1703–1710CrossRefGoogle Scholar
  97. 97.
    Lopez MMA, Valentini L, Biagiotti J, Kenny JM (2005) Thermal and mechanical properties of single-walled carbon nanotubes–polypropylene composites prepared by melt processing. Carbon 43:1499–1505CrossRefGoogle Scholar
  98. 98.
    Guth E, Gold O (1938) On the hydro dynamical theory of the viscosity of suspensions. Phys Rev 53:322–325Google Scholar
  99. 99.
    Smallwood HM (1944) Limiting law of the reinforcement of rubber. J Appl Phys 15:758–766CrossRefGoogle Scholar
  100. 100.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191PubMedCrossRefGoogle Scholar
  101. 101.
    Chen JY, Wen YG, Guo YL, Wu B, Huang LP, Xue YZ, Geng DC, Wang D, Yu G, Liu YQ (2011) Oxygen-aided synthesis of polycrystalline graphene on silicon dioxide substrates. J Am Chem Soc 133:17548–17551PubMedCrossRefGoogle Scholar
  102. 102.
    Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  103. 103.
    Dragoman D, Dragoman M (2007) Negative differential resistance of electrons in graphene barrier. Appl Phys Lett 90:203116CrossRefGoogle Scholar
  104. 104.
    Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State 35(1):52–71CrossRefGoogle Scholar
  105. 105.
    Zhao X, Zhang QH, Chen DJ, Lu P (2010) Enhanced mechanical properties of graphene-based poly (vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRefGoogle Scholar
  106. 106.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, FirsovA A (2004) Electric field effect in atomically thin carbon films. Science 5696:666–669CrossRefGoogle Scholar
  107. 107.
    Wu H, Zhao W, Hu H, Chen G (2011) One-step in situ ball milling synthesis of polymer-functionalized graphene nanocomposites. J Mater Chem 21:8626–8632CrossRefGoogle Scholar
  108. 108.
    Su Q, Pang SP, Alijani V, Li C, Feng XL, Mullen K (2009) Composites of graphene with large aromatic molecules. Adv Mater 21:3191–3195CrossRefGoogle Scholar
  109. 109.
    Kim H, Kobayashi S, AbdurRahim MA, Zhang MLJ, Khusainova A, Hillmyer MA, Abdala AA, Macosko CW (2011) Graphite oxide, graphene, and metal-loaded graphene for fire safety applications of polystyrene. Polymer 52:1837–1846CrossRefGoogle Scholar
  110. 110.
    Bao C, Song L, Xing W, Yuan B, Wilkie CA, Huang J, Guo Y, Hu Y (2012) Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J Mater Chem 22:6088–6096CrossRefGoogle Scholar
  111. 111.
    Xu Z, Gao C (2010) In situ polymerization approach to graphene-reinforced nylon-6 composites. Macromolecules 43:6716–6723CrossRefGoogle Scholar
  112. 112.
    Pramoda KP, Hussain H, Koh HM, Tan HR, He CB (2010) Covalent bonded polymer-graphene nanocomposites. J Polym Sci Part A Polym Chem 48:4262–4267CrossRefGoogle Scholar
  113. 113.
    Wang J, Wang X, Xu C, Zhang M, Shang X (2011) Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym Int 60:816–822CrossRefGoogle Scholar
  114. 114.
    Bao C, Guo Y, Song L, Hu Y (2011) Poly(vinyl alcohol) nanocomposites based on graphene and graphite oxide: a comparative investigation of property and mechanism. J Mater Chem 21:13942–13950CrossRefGoogle Scholar
  115. 115.
    Wang X, Yang H, Song L, Hu Y, Xing W, Lu H (2011) Morphology, mechanical and thermal properties of graphene-reinforced poly(butylene succinate) nanocomposites. Compos Sci Technol 72:1–6CrossRefGoogle Scholar
  116. 116.
    Luong ND, Hippi U, Korhonen JT, Soininen AJ, Ruokolainen J, Johansson LS, Nam JD, Sinh LH, Seppälä J (2011) Enhanced mechanical and electrical properties of polyimide film by graphene sheets via in situ polymerization. Polymer 52:5237–5242CrossRefGoogle Scholar
  117. 117.
    Jia X, Liu B, Huang L, Hui D, Yang X (2013) Numerical analysis of synergistic reinforcing effect of silica nanoparticle–MWCNT hybrid on epoxy-based composites. Compos Part B Eng 54:133–137CrossRefGoogle Scholar
  118. 118.
    Davis DC, Wilkerson JW, Zhu J, Hadjiev VG (2011) A strategy for improving mechanical properties of a fiber reinforced epoxy composite using functionalized carbon nanotubes. Compos Sci Technol 71(8):1089–1097CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • K. Sasikumar
    • 1
  • N. R. Manoj
    • 2
  • T. Mukundan
    • 2
  • Mostafizur Rahaman
    • 3
  • Dipak Khastgir
    • 4
  1. 1.Advanced Technologies Division, Nano and Composites GroupCombat Vehicles Research and Development Establishment, DRDOChennaiIndia
  2. 2.Materials and MEMS Group, Naval Physical and Oceanographic LaboratoryDRDOKochiIndia
  3. 3.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  4. 4.Rubber Technology Center, Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations