Advertisement

Preparation/Processing of Polymer–Carbon Composites by Different Techniques

  • Mostafizur Rahaman
  • Ali Aldalbahi
  • Purabi Bhagabati
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

In this chapter, the discussion has been made on some important methodologies to prepare polymer/carbon composites. These procedures are solution mixing technique, melt mixing technique, in situ polymerization technique, dry mixing technique, powder mixing technique, and aqueous mixing technique. Solution mixing has been categorized into evaporative casting, vacuum filtration, 3D printing, and wet spinning. In the melt mixing process, the discussion has been focused on melt blending through internal mixer and melt spinning. Some diagrams have been drawn and discussed for better understanding of the composite preparation processes. The advantages and disadvantages associated with the composite preparation processes are mentioned herein where necessary.

Keywords

Polymer/carbon composites Composite processing Solution mixing Melt mixing In situ polymerization Dry mixing Powder mixing Aqueous mixing 

References

  1. 1.
    Harris P (2004) Carbon nanotube composites. Int Mater Rev 49(1):31–43CrossRefGoogle Scholar
  2. 2.
    Spitalsky Z, Tasis D, Papagelis K, Galiotis C (2010) Carbon nanotube-polymer composites: chemistry, processing, mechanical and electrical properties. Prog Polym Sci 35(3):357–401CrossRefGoogle Scholar
  3. 3.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRefGoogle Scholar
  4. 4.
    Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81(27):5123–5125CrossRefGoogle Scholar
  5. 5.
    Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP (2004) Mechanical and morphological characterization of polymer-carbon nanocomposites from functionalized carbon nanotubes. Carbon 42(14):2849–2854CrossRefGoogle Scholar
  6. 6.
    Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  7. 7.
    Safadi B, Andrews R, Grulke EA (2002) Multiwalled carbon nanotube polymer composites: synthesis and characterization of thin films. J Appl Polym Sci 84(14):2660–2669CrossRefGoogle Scholar
  8. 8.
    Songmee N, Singjai P, in het Panhuis M (2010) Gel-carbon nanotube materials: the relationship between nanotube network connectivity and conductivity. Nanoscale 2(9):1740–1745Google Scholar
  9. 9.
    Ferris CJ, in het Panhuis M (2009) Gel-carbon nanotube composites: the effect of carbon nanotubes on gelation and conductivity behavior. Soft Matter 5(7):1466–1473Google Scholar
  10. 10.
    Bayer IS, Caramia V, Fragouli D, Spano F, Cingolani R, Athanassiou A (2012) Electrically conductive and high temperature resistant superhydrophobic composite films from colloidal graphite. J Mater Chem 22(5):2057–2062CrossRefGoogle Scholar
  11. 11.
    Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH, Smalley RE (2002) Single-wall carbon nanotube films. Chem Mater 15(1):175–178CrossRefGoogle Scholar
  12. 12.
    Bauhofer W, Kovacs JZA (2009) Review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69(10):1486–1498CrossRefGoogle Scholar
  13. 13.
    Coleman JN, Cadek M, Ryan KP, Fonseca A, Nagy JB, Blau WJ, Ferreira MS (2006) Reinforcement of polymers with carbon nanotubes. The role of an ordered polymer interfacial region. Experiment and modeling. Polymer 47(26):8556–8561CrossRefGoogle Scholar
  14. 14.
    Araby S, Meng Q, Zhang L, Kang H, Majewski P, Tang Y, Ma J (2014) Electrically and thermally conductive elastomer/graphene nanocomposites by solution mixing. Polymer 55:201–210CrossRefGoogle Scholar
  15. 15.
    Bian J, Wei XW, Lin HL, Gong SJ, Zhang H, Guan ZP (2011) Preparation and characterization of modified graphite oxide/poly(propylene carbonate) composites by solution intercalation. Polym Degrad Stab 96:1833–1840CrossRefGoogle Scholar
  16. 16.
    Ou R, Gupta S, Parker CA, Gerhardt RA (2006) Fabrication and electrical conductivity of poly(methyl methacrylate) (PMMA)/carbon black (CB) composites: comparison between an ordered carbon black nanowire-like segregated structure and a randomly dispersed carbon black nanostructure. J Phys Chem B 110:22365–22373PubMedCrossRefGoogle Scholar
  17. 17.
    Wu Z, Chen Z, Du X, Logan JM, Sippel J, Nikolou M, Kamaras K, Reynolds JR, Tanner DB, Hebard AF, Rinzler AG (2004) Transparent, conductive carbon nanotube films. Science 305(5688):1273–1276PubMedCrossRefGoogle Scholar
  18. 18.
    Kukovecz A, Smajda R, Konya Z, Kiricsi I (2007) Controlling the pore diameter distribution of multi-wall carbon nanotube buckypapers. Carbon 45(8):1696–1698CrossRefGoogle Scholar
  19. 19.
    Whitby RLD, Fukuda T, Maekawa T, James SL, Mikhalovsky SV (2008) Geometric control and tuneable pore size distribution of buckypaper and buckydiscs. Carbon 46(6):949–956CrossRefGoogle Scholar
  20. 20.
    Wang Q, Moriyama H (2011) Carbon nanotube-based thin films: synthesis and properties. In: Yellampalli S (ed) Carbon nanotubes—synthesis, characterization, applications. InTech,Rijeka, pp 488–514Google Scholar
  21. 21.
    Boge J, Sweetman LJ, in het Panhuis M, Ralph SF (2009) The effect of preparation conditions and biopolymer dispersants on the properties of SWNT buckypaper. J Mater Chem 19(48):9131–9140Google Scholar
  22. 22.
    Hall LJ, Coluci VR, Galvao DS, Kozlov ME, Zhang M, Dantas SO, Baughman RH (2008) Sign change of Poisson’s ratio for carbon nanotube sheets. Science 320(5875): 504–507PubMedCrossRefGoogle Scholar
  23. 23.
    Agnes SC, John EF, Chad BH, Andrew GR, Richard ES (2000) Solid-state electrochemistry of the Li single wall carbon nanotube system. J Electrochem Soc 147(8):2845–2852CrossRefGoogle Scholar
  24. 24.
    Liu T, Sreekumar TV, Kumar S, Hauge RH, Smalley RE (2003) SWNT/PAN composite film-based supercapacitors. Carbon 41(12):2440–2442CrossRefGoogle Scholar
  25. 25.
    Prokudina NA, Shishchenko ER, Joo OS, Hyung KH, Han SH (2005) A carbon nanotube film as a radio frequency filter. Carbon 43(9):1815–1819CrossRefGoogle Scholar
  26. 26.
    Rein MD, Breuer O, Wagner HD (2011) Sensors and sensitivity: carbon nanotube buckypaper films as strain sensing devices. Compos Sci Technol 71(3):373–381CrossRefGoogle Scholar
  27. 27.
    Putz KW, Compton OC, Palmeri MJ, Nguyen SBT, Brinson LC (2010) High-nanofiller-content graphene oxide–polymer nanocomposites via vacuum-assisted self-assembly. Adv Funct Mater 20:3322–3329CrossRefGoogle Scholar
  28. 28.
    Ziabicki A (1976) Fundamentals of fibre formation: the science of fibre spinning and drawing. Wiley, New YorkGoogle Scholar
  29. 29.
    Nakajima T (1994) Advanced fiber spinning technology. Woodhead Publishing, CambridgeGoogle Scholar
  30. 30.
    Luo Y, Gong Z, He M, Wang X, Tang Z, Chen H (2011) Fabrication of high-quality carbon nanotube fibers for optoelectronic applications. Solar Energy Mater Solar Cells 97:78–82CrossRefGoogle Scholar
  31. 31.
    Pomfret SJ, Adams PN, Comfort NP, Monkman AP (199) Advances in processing routes for conductive polyaniline fibres. Synth Met 101(1–3):724–725CrossRefGoogle Scholar
  32. 32.
    Granero AJ, Razal JM, Wallace GG, in het Panhuis M (2008) Spinning carbon nanotube-gel fibers using polyelectrolyte complexation. Adv Funct Mater 18(23):3759–3764Google Scholar
  33. 33.
    Higgins T, Warren H, in het Panhuis M (2011) Film, buckypapers and fibers from clay chitosan and carbon nanotubes. Nanomaterials 1:3–19Google Scholar
  34. 34.
    Raza JM, Gilmore KJ, Wallace GG (2008) Carbon nanotube biofiber formation in a polymer-free coagulation bath. Adv Funct Mater 18(1):61–66CrossRefGoogle Scholar
  35. 35.
    Mottaghitalab T (2006) Development characterisation of polyaniline-carbon nanotube conducting composite fibers. Ph.D. thesis, Mechanical and Materials Engineering, University of Wollongong, WollongongGoogle Scholar
  36. 36.
    Denneulin A, Bras J, Blayo A, Khelifi B, Roussel-Dherbey F, Neuman C (2009) The influence of carbon nanotubes in inkjet printing of conductive polymer suspensions. Nanotechnology 20(38):385701PubMedCrossRefGoogle Scholar
  37. 37.
    Kordás K, Mustonen T, Tóth G, Jantunen H, Lajunen M, Soldano C, Talapatra S, Kar S, Vajtai R, Ajayan P (2006) Inkjet printing of electrically conductive patterns of carbon nanotubes. Small 2(8–9):1021–1025PubMedCrossRefGoogle Scholar
  38. 38.
    Mire CA, Agrawal A, Wallace GG, Calvert P, in het Panhuis M (2011) Inkjet and extrusion printing of conducting poly(3,4-ethylenedioxythiophene) tracks on and embedded in biopolymer materials. J Mater Chem 21:2671–2678Google Scholar
  39. 39.
    Pidcock G, in het Panhuis M (2010) Extrusion printing conducting gel-carbon nanotube structures upon flexible substrates. In: Optoelectronic and microelectronic materials and devices (COMMAD), IEEE, Canberra, pp 179–180Google Scholar
  40. 40.
    Jayesh B, Yang Y (1998) Polymer electroluminescent devices processed by inkjet printing: I. polymer light-emitting logo. Appl Phys Lett 72(21):2660–2662CrossRefGoogle Scholar
  41. 41.
    Song JW, Kim J, Yoon YH, Choi BS, Kim JH, Han CS (2008) Inkjet printing of single-walled carbon nanotubes and electrical characterization of the line pattern. Nanotechnology 19(9):095702PubMedCrossRefGoogle Scholar
  42. 42.
    Mustonen T, Kordás K, Saukko S, Tóth G, Penttilä JS, Helistö P, Seppä H, Jantunen H (2007) Inkjet printing of transparent and conductive patterns of single-walled carbon nanotubes and PEDOT-PSS composites. Physica Status Solidi (B) 244(11):4336–4340CrossRefGoogle Scholar
  43. 43.
    McCallum D, Ferris C, Calvert P, Wallace G, in het Panhuis M (2010) Printed hydrogel materials. In: International conference on nanoscience and nanotechnology (ICONN), IEEE, Sydney, pp 257–260Google Scholar
  44. 44.
    Calvert P (2001) Inkjet printing for materials and devices. Chem Mater 13(10):3299–3305CrossRefGoogle Scholar
  45. 45.
    Calvert P (2007) Printing cells. Science 318(5848):208–209PubMedCrossRefGoogle Scholar
  46. 46.
    Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka JT (2003) Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24(8):1487–1497PubMedCrossRefGoogle Scholar
  47. 47.
    Lemmo AV, Rose DJ, Tisone TC (1998) Inkjet dispensing technology: applications in drug discovery. Curr Opin Biotechnol 9(6):615–617PubMedCrossRefGoogle Scholar
  48. 48.
    Collier WA, Janssen D, Hart AL (1996) Measurement of soluble L-lactate in dairy products using screen-printed sensors in batch mode. Biosens Bioelectron 11(10):1041–1049PubMedCrossRefGoogle Scholar
  49. 49.
    Nakamura M, Nishiyama Y, Henmi C, Yamaguchi K(2006) Inkjet bioprinting as an effective tool for tissue fabrication. Soc Imaging Sci Technol, 89–92Google Scholar
  50. 50.
    Yoo J, Wake T (2008) Inkjet printing technology for regenerative medicine. Soc Imaging Sci Technol, 7–9Google Scholar
  51. 51.
    Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1(9):910–917PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Small WR, in het Panhuis M (2007) Inkjet printing of transparent, electrical conducting single-walled carbon-nanotube composites. Small 3(9):1500–1503Google Scholar
  53. 53.
    Calvert P, Crockett R (1997) Chemical solid free-form fabrication: making shapes without molds. Chem Mater 9(3):650–663CrossRefGoogle Scholar
  54. 54.
    Lu X, Lee Y, Yang S, Hao Y, Evans JRG, Parini CG (2010) Solvent-based paste extrusion solid free forming. J Eur Ceram Soc 30(1):1–10CrossRefGoogle Scholar
  55. 55.
    Leong KF, Cheah CM, Chua CK (2003) Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs. Biomaterials 24(13):2363–2378PubMedCrossRefGoogle Scholar
  56. 56.
    Rauwendaal C (2001) Polymer extrusion. Hanser, MunichGoogle Scholar
  57. 57.
    Tekinalp HL, Kunc V, Velez-Garcia GM, Duty CE, Love LJ, Naskar AK, Blue CA, Ozcan S (2014) Highly oriented carbon fiber-polymer composites via additive manufacturing. Compos Sci Technol 105:144–150CrossRefGoogle Scholar
  58. 58.
    Rymansaib Z, Iravani P, Emslie E, Medvidovic Kosanovic M, Sak Bosnar M, Verdejo R, Marken F (2016) All polystyrene 3D printed electrochemical device with embedded carbon nanofiber graphite polystyrene composite conductor. Electroanalysis 28(7):1517–1523CrossRefGoogle Scholar
  59. 59.
    Athreya SR, Kalaitzidou K, Das S (2010) Processing and characterization of a carbon black-filled electrically conductive nylon-12 nanocomposite produced by selective laser sintering. Mater Sci Eng A 527(10):2637–2642CrossRefGoogle Scholar
  60. 60.
    Wei X, Li D, Jiang W, Gu Z, Wang X, Zhang Z, Sun Z (2015) 3D printable graphene composite. Sci Rep 5:11181PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Rahaman M, Chaki TK, Khastgir D (2011) Development of high performance EMI shielding material from EVA, NBR, and their blends: effect of carbon black structure. J Mater Sci 46(11):3989–3999CrossRefGoogle Scholar
  62. 62.
    Gubbels F, Jérôme R, Teyssie P, Vanlathem E, Deltour R, Calderone A, Parente V, Bredas JL (1994) Selective localization of carbon black in immiscible polymer blends- a useful tool to design electrical conductive composites. Macromolecules 27:1972–1974CrossRefGoogle Scholar
  63. 63.
    Rahaman M, Chaki TK, Khastgir D (2013) Control of the temperature coefficient of the DC resistivity in polymer-based composites. J Mater Sci 48(21):7466–7475CrossRefGoogle Scholar
  64. 64.
    Li Y, Shimizu H (2007) High shear processing induced homogenous dispersion of pristine multiwalled carbon nanotubes in a thermoplastic elastomer. Polymer 48:2203–2207CrossRefGoogle Scholar
  65. 65.
    Rahaman M, Thomas SP, Hussein IA, De SK (2013) Dependence of electrical properties of polyethylene nanocomposites on aspect ratio of carbon nanotubes. Polym Compos 34(4):494–499CrossRefGoogle Scholar
  66. 66.
    Potschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D (2004) Rheological and dielectrical characterization of melt mixed polycarbonate-multiwalled carbon nanotube composites. Polymer 45(26):8863–8870CrossRefGoogle Scholar
  67. 67.
    Zhang WD, Shen L, Phang IY, Liu T (2003) Carbon nanotubes reinforced nylon-6 composite prepared by simple melt-compounding. Macromolecule 37(2):256–259CrossRefGoogle Scholar
  68. 68.
    Rahaman M, Chaki TK, Khastgir D (2011) High-performance EMI shielding materials based on short carbon fiber-filled ethylene vinyl acetate copolymer, acrylonitrile butadiene copolymer, and their blends. Polym Compos 32(11):1790–1805CrossRefGoogle Scholar
  69. 69.
    Shanks RA, Cerezo FT (2012) Preparation and properties of poly(propylene-g-maleic anhydride) filled with expanded graphite oxide. Compos Part A 43:1092–1100CrossRefGoogle Scholar
  70. 70.
    Maiti S, Suin S, Shrivastava NK, Khatua BB (2014) Low percolation threshold and high electrical conductivity in melt-blended polycarbonate/multiwall carbon nanotube nanocomposites in the presence of poly(ε-caprolactone). Polym Eng Sci 54:646–659CrossRefGoogle Scholar
  71. 71.
    Cruz SM, Viana JC (2015) Melt blending and characterization of carbon nanoparticles-filled thermoplastic polyurethane elastomers. J Elastom Plast 47(7):647–665CrossRefGoogle Scholar
  72. 72.
    Koysuren O, Yesil S, Bayram G (2006) Effect of composite preparation techniques on electrical and mechanical properties and morphology of nylon 6 based conductive polymer composites. J Appl Polym Sci 102:2520–2526CrossRefGoogle Scholar
  73. 73.
    Garzón C, Palza H (2014) Electrical behavior of polypropylene composites melt mixed with carbon-based particles: Effect of the kind of particle and annealing process. Compos Sci Technol 99:117–123CrossRefGoogle Scholar
  74. 74.
    Zhang Q, Zhang BY, Guo ZX, Yu J (2017) Tunable electrical conductivity of carbon-black-filled ternary polymer blends by constructing a hierarchical structure. Polymers 9:404CrossRefGoogle Scholar
  75. 75.
    Wang H, Xie GY, Yang C, Zheng YX, Ying Z (2017) Enhanced toughness of multilayer graphene-filled poly(vinyl chloride) composites prepared using melt-mixing method. Polym Compos 38:138–146CrossRefGoogle Scholar
  76. 76.
    Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mater Chem 21:3301–3310CrossRefGoogle Scholar
  77. 77.
    Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450CrossRefGoogle Scholar
  78. 78.
    Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Polymer−graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 41:1905–1908CrossRefGoogle Scholar
  79. 79.
    Zhang HB, Zheng WG, Yan Q, Yang Y, Wang JW, Lu ZH, Ji GY, Yu ZZ (2010) Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51:1191–1196CrossRefGoogle Scholar
  80. 80.
    Al-Saleh MH, Jawad SA (2016) Graphene nanoplatelet–polystyrene nanocomposite: dielectric and charge storage behaviors. J Electro Mater 45:3532–3595CrossRefGoogle Scholar
  81. 81.
    Arya T, Justin H, Dong Z, Taghon M, Tse S, Chiu G, Mayo WE, Kear B, Nosker T, Lynch J (2017) Characterization of melt-blended graphene–poly(ether ether ketone) nanocomposite. Mater Sci Eng B 216:41–49CrossRefGoogle Scholar
  82. 82.
    You F, Wang D, Cao J, Li X, Dang ZM, Hu GH (2014) In situ thermal reduction of graphene oxide in a styrene–ethylene/butylene–styrene triblock copolymer via melt blending. Polym Int 63:93–99CrossRefGoogle Scholar
  83. 83.
    Pötschke P, Brünig H, Janke A, Fischer D, Jehnichen D (2005) Orientation of multiwalled carbon nanotubes in composites with polycarbonate by melt spinning. Polymer 46:10355–10363CrossRefGoogle Scholar
  84. 84.
    Johannsen I, Jaksik K, Wirch N, Pötschke P, Fiedler B, Schulte K (2016) Electrical conductivity of melt-spun thermoplastic poly(hydroxy ether of bisphenol A) fibres containing multi-wall carbon nanotubes. Polymer 97:80–94CrossRefGoogle Scholar
  85. 85.
    Pötschke P, Andres T, Villmow T, Pegel S, Brünig H, Kobashi K, Fischer D, Häussler L (2010) Liquid sensing properties of fibres prepared by melt spinning from poly(lactic acid) containing multi-walled carbon nanotubes. Compos Sci Technol 70:343–349CrossRefGoogle Scholar
  86. 86.
    Soroudi A, Skrifvars M (2010) Melt blending of carbon nanotubes/ polyaniline/ polypropylene compounds and their melt spinning to conductive fibres. Synth Met 160:1143–1147CrossRefGoogle Scholar
  87. 87.
    Yanga Z, Xu D, Liu J, Liu J, Li L, Zhang L, Lv J (2015) Fabrication and characterization of poly(vinyl alcohol)/carbon nanotube melt-spinning composites fiber. Prog Natural Sci Mater Int 25:437–444CrossRefGoogle Scholar
  88. 88.
    Weise B, Völkel L, Köppe G, Schriever S, Mroszczok J, Köhler J, Scheffler P, Wegener M, Seide G (2017) Melt- and wet-spinning of graphene-polymer nano-composite fibres for multifunctional textile applications. Mater Today Proc 4:S135–S145CrossRefGoogle Scholar
  89. 89.
    Strååt M, Toll S, Boldizar A, Rigdahl M, Hagström B (2011) Melt spinning of conducting polymeric composites containing carbonaceous fillers. J Appl Polym Sci 119:3264–3272CrossRefGoogle Scholar
  90. 90.
    Ghatak S, Chakraborty G, Meikap AK, Woods T, Babu R, Blau WJ (2010) Synthesis and characterization of polyaniline/carbon nanotube composites. J Appl Polym Sci 119(2):1016–1025CrossRefGoogle Scholar
  91. 91.
    Shaffer MP, Koziol K (2002) Polystyrene grafted multi-walled carbon nanotubes. Chem Commun 18:2074–2075CrossRefGoogle Scholar
  92. 92.
    Park C, Ounaies Z, Watson KA, Crooks RE, Smith J Jr, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364(3–4):303–308CrossRefGoogle Scholar
  93. 93.
    Spitalsky Z, Tsoukleri G, Tasis D, Krontiras C, Georga SN, Galiotis C (2009) High volume fraction carbon nanotube-epoxy composites. Nanotechnology 20(40):405–702CrossRefGoogle Scholar
  94. 94.
    Higgins BA, Brittain WJ (2005) Polycarbonate carbon nanofiber composites. Eur Polym J 41(5):889–893CrossRefGoogle Scholar
  95. 95.
    Konyushenko E, Stejskal J, Trchova M, Hradil J, Kovarova J, Prokes J, Cieslar M, Hwang J, Chen K, Sapurina I (2006) Multi-wall carbon nanotubes coated with polyaniline. Polymer 47(16):5715–5723CrossRefGoogle Scholar
  96. 96.
    Guo Y, Bao C, Song L, Yuan B, Hu Y (2011) In situ polymerization of graphene, graphite oxide, and functionalized graphite oxide into epoxy resin and comparison study of on the flame behavior. Ind Eng Chem Res 50:7772–7783CrossRefGoogle Scholar
  97. 97.
    Fim FDC, Guterres JM, Basso NRS, Galland GB (2010) Polyethylene/graphite nanocomposites obtained by in situ polymerization. J Polym Sci Part A Polym Chem 48(3):692–698CrossRefGoogle Scholar
  98. 98.
    Xu Z, Gao C (2010) In situ polymerization approach to graphene reinforced nylon-6 composites. Macromolecules 43(16):6716–6723CrossRefGoogle Scholar
  99. 99.
    Fabbri P, Bassoli E, Bon SB, Valentini L (2012) Preparation and characterization of poly(butylene terephthalate)/graphene composites by in-situ polymerization of cyclic butylene terephthalate. Polymer 53:897–902CrossRefGoogle Scholar
  100. 100.
    Zaragoza-Contreras EA, Hernández-Escobar CA, Navarrete-Fontes A, Flores-Gallardo SG (2011) Synthesis of carbon black/polystyrene conductive nanocomposite. Pickering emulsion effect characterized by TEM. Micron 42:263–270PubMedCrossRefGoogle Scholar
  101. 101.
    Hassan M, Reddy KR, Haque E, Minett AI, Gomes VG (2013) High-yield aqueous phase exfoliation of graphene for facile nanocomposite synthesis via emulsion polymerization. J Colloid Interface Sci 410:43–51PubMedCrossRefGoogle Scholar
  102. 102.
    Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484(4–6):247–253CrossRefGoogle Scholar
  103. 103.
    Liu C, Dong B, Zhang LQ, Zheng Q, Wu YP (2015) Influence of strain amplification near crack tip on the fracture resistance of carbon black–filled SBR. Rubber Chem Technol 88(2):276–288CrossRefGoogle Scholar
  104. 104.
    Mohapatra S, Nando GB (2015) Analysis of carbon black–reinforced cardanol-modified natural rubber compounds. Rubber Chem Technol 88(2):289–309CrossRefGoogle Scholar
  105. 105.
    Sethi D, Ram R, Khastgir D (2017) Analysis of electrical and dynamic mechanical response of conductive elastomeric composites subjected to cyclic deformations and temperature. Polym Compos.  https://doi.org/10.1002/pc.24429CrossRefGoogle Scholar
  106. 106.
    Shanmugharaj AM, Bae JH, Lee KY, Noh WH, Lee SH, Ryu SH (2007) Physical and chemical characteristics of multiwalled carbon nanotubes functionalized with aminosilane and its influence on the properties of natural rubber composites. Compos Sci Technol 67:1813–1822CrossRefGoogle Scholar
  107. 107.
    Sau KP, Chaki TK, Khastgir D (1998) The change in conductivity of a rubber-carbon black composite subjected to different modes of pre-strain. Compos Part A 29:363–370CrossRefGoogle Scholar
  108. 108.
    Das A, Kasaliwal GR, Jurk R, Boldt R, Fischer D, Stöckelhuber KW, Heinrich G (2012) Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: a comparative study. Compos Sci Technol 72:1961–1967CrossRefGoogle Scholar
  109. 109.
    Jovanović V, Samaržija-Jovanović S, Budinski-Simendić J, Marković G, Marinović-Cincovic M (2013) Composites based on carbon black reinforced NBR/EPDM rubber blends. Compos Part B 45:333–340CrossRefGoogle Scholar
  110. 110.
    Sau KP, Khastgir D, Chaki TK (1998) Electrical conductivity of carbon black and carbon fibre filled silicone rubber composites. Macromol Mater Eng 258(1):11–17Google Scholar
  111. 111.
    Staniforth JN (1987) Order out of chaos. J Pharm Pharmacol 39:329–334PubMedCrossRefGoogle Scholar
  112. 112.
    Poux M, Fayolle P, Bertrand J (1991) Powder mixing: some practical rules applied to agitated systems. Powder Technol 68:213–234CrossRefGoogle Scholar
  113. 113.
    Fan LT, Chen YM (1990) Recent developments in solids mixing. Powder Technol 61:255–287CrossRefGoogle Scholar
  114. 114.
    Chen DZ, Lao S, Koo JH, Londa M, Alabdullatif Z (2010) Powder processing and properties characterization of polyamide 11- graphene nanocomposites for selective laser sintering, pp 435–450. Paper presented at 21st annual international solid freeform fabrication symposium—an additive manufacturing conference, SFF 2010, Austin, TX, USA, 9–11 Aug 2010Google Scholar
  115. 115.
    Islam I, Sultana S, Ray SK, Nur HP, Hossain MT, Ajmotgir WM (2018) Electrical and tensile properties of carbon black reinforced polyvinyl chloride conductive composites. J Carbon Res 4:15CrossRefGoogle Scholar
  116. 116.
    Suh JY, Shin SE, Bae DH (2017) Electrical properties of polytetrafluoroethylene/few-layer graphene composites fabricated by solid-state processing. J Compos Mater 51(18):2565–2573CrossRefGoogle Scholar
  117. 117.
    Lee KM, Oh SM, Lee SM (2008) Electrochemical properties of carbon composites prepared by using graphite ball-milled in argon and air atmosphere. Bull Korean Chem Soc 29(6):1121–1124CrossRefGoogle Scholar
  118. 118.
    Chan CM, Cheng CL, Yuen MMF (1997) Electrical properties of polymer composites prepared by sintering a mixture of carbon black and ultra-high molecular weight polyethylene powder. Polym Eng Sci 37(7):1127–1136CrossRefGoogle Scholar
  119. 119.
    Schulze M, Lorenz M, Kaz T (2002) XPS study of electrodes formed from a mixture of carbon black and PTFE powder. Surf Interface Anal 34:646–651CrossRefGoogle Scholar
  120. 120.
    Ma CY, Huang SC, Chou PH, Den W, Hou CH (2016) Application of a multiwalled carbon nanotube-chitosan composite as an electrode in the electrosorption process for water purification. Chemosphere 146:113–120PubMedCrossRefGoogle Scholar
  121. 121.
    Li C, Hou T, She X, Wei X, She F, Gao W, Kong L (2015) Decomposition properties of PVA/graphene composites during melting-crystallization. Polym Degrad Stab 119:178–189CrossRefGoogle Scholar
  122. 122.
    Zhao X, Zhang Q, Chen D (2010) Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites. Macromolecules 43:2357–2363CrossRefGoogle Scholar
  123. 123.
    Wang SF, Shen L, Zhang WD, Tong YJ (2005) Preparation and mechanical properties of chitosan/carbon nanotubes composites. Biomacromol 6:3067–3072CrossRefGoogle Scholar
  124. 124.
    Bin-Dahman OA, Rahaman M, Khastgir D, Al-Harthi MA (2018) Electrical and dielectric properties of poly(vinyl alcohol)/starch/graphene nanocomposites. Can J Chem Eng 96(4):903–911CrossRefGoogle Scholar
  125. 125.
    Hasan M, Das SK, Islam JMM, Gafur MA, Hoque E, Khan MA (2013) Thermal properties of carbon nanotube (CNT) reinforced polyvinyl alcohol (PVA) composites. Int Lett Chem Phys Astron 12:59–66CrossRefGoogle Scholar
  126. 126.
    Yang A, Yang P, Huang CP (2017) Preparation of graphene oxide–chitosan composite and adsorption performance for uranium. J Radioanal Nucl Chem 313:371–378CrossRefGoogle Scholar
  127. 127.
    Lin JH, Lin ZI, Pan YJ, Hsieh CT, Huang CL, Lou CW (2016) Thermoplastic polyvinyl alcohol/multiwalled carbon nanotube composites: preparation, mechanical properties, thermal properties, and electromagnetic shielding effectiveness. J Appl Polym Sci 133:43474CrossRefGoogle Scholar
  128. 128.
    Nasr GM, Abd El-Haleem AS, Klingner A, Alnozahy AM, Mourad MH (2015) The DC electrical properties of polyvinyl alcohol/multi-walled carbon nanotube composites. J Multidiscip Eng Sci Technol 2(5):884–889Google Scholar
  129. 129.
    Cheng-an T, Hao Z, Fang W, Hui Z, Xiaorong Z, Jianfang W (2017) Mechanical properties of graphene oxide/polyvinyl alcohol composite film. Polym Polym Compos 25(1):11–16CrossRefGoogle Scholar
  130. 130.
    Simsek EB, Saloglu D, Ozcan N, Novak I, Berek D (2017) Carbon fiber embedded chitosan/PVA composites for decontamination of endocrine disruptor bisphenol-A from water. J Taiwan Inst Chem Eng 70:291–301CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Mostafizur Rahaman
    • 1
  • Ali Aldalbahi
    • 1
  • Purabi Bhagabati
    • 2
  1. 1.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Chemical Engineering DepartmentIndian Institute of Technology GuwahatiGuwahatiIndia

Personalised recommendations