Surface Modification/Functionalization of Carbon Materials by Different Techniques: An Overview

  • Lalatendu NayakEmail author
  • Mostafizur Rahaman
  • Radhashyam Giri
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Carbon materials have agglomeration tendency because of high van der Wall force of interaction among the carbon particles. This agglomeration tendency has been an obstacle for their application in different fields. In order to reduce this agglomeration tendency and to explore their application areas, different surface modification/functionalization processes have been successfully developed by researchers. Surface functionalization reduces the agglomerating tendency of carbon materials and increases the carbon–polymer interfacial adhesion through covalent or ionic bonds. This chapter aims to depict an overview on the different types of surface functionalization techniques applied to different carbon materials like carbon blacks (CB), carbon nanotubes (CNTs), carbon nanofibers (CNFs), graphenes, and fullerenes. The methodology like wet oxidation (oxidation using nitric acid, sulfuric acid, hydrogen peroxide, potassium permanganate, etc.), dry oxidation (oxidation with air, ozone, plasma, etc.), amidation, silanization, silylation, polymer grafting, polymer wrapping, surfactant adsorption, and encapsulation have been presented with different examples. All the functionalization processes have been highlighted with their specific application. The gathering of different functionalization processes in this chapter will provide deep understanding regarding the selection of a particular technique for specific application.


Functionalization Carbon nanotube Carbon nanofiber Ozone Plasma Polymer grafting Encapsulation 


  1. 1.
    Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1:180–192PubMedCrossRefGoogle Scholar
  2. 2.
    Hirsch A (2002) Functionalization of single-walled carbon nanotubes. Angew Chem Int Ed 41:1853–1859 CrossRefGoogle Scholar
  3. 3.
    Hirsch A, Vostrowsky O (2005) Functionalization of carbon nanotubes. Top Curr Chem 245:193–237CrossRefGoogle Scholar
  4. 4.
    Nayak L, Khastgir D, Chaki TK (2012) Influence of carbon nanofibers reinforcement on thermal and electrical behavior of polysulfone nanocomposites. Polym Eng Sci 52:2424–2434CrossRefGoogle Scholar
  5. 5.
    Nayak L, Khastgir D, Chaki TK (2013) A mechanistic study on electromagnetic shielding effectiveness of polysulfone/carbon nanofibers nanocomposites. J Mater Sci 48:1492–1502CrossRefGoogle Scholar
  6. 6.
    Ma PC, Kim JK, Tang BZ (2006) Functionalization of carbon nanotubes using a silane coupling agent. Carbon 44:3232–3238CrossRefGoogle Scholar
  7. 7.
    Liu P (2005) Modifications of carbon nanotubes with polymers. Eur Polym J 41:2693–2703CrossRefGoogle Scholar
  8. 8.
    Hamon MA, Hui H, Bhowmik P (2002) Ester-functionalized soluble single-walled carbon nanotubes. Appl Phys A 74:333–338CrossRefGoogle Scholar
  9. 9.
    Stephenson JJ, Sadana AK, Higginbotham AL, Tour JM (2006) Highly functionalized and soluble multiwalled carbon nanotubes by reductive alkylation and arylation: the billups reaction. Chem Mater 18:4658–4661CrossRefGoogle Scholar
  10. 10.
    Esumi K, Ishigami M, Nakajima A, Sawada K, Honda H (1996) Chemical treatment of carbon nanotubes. Carbon 34:279–281CrossRefGoogle Scholar
  11. 11.
    Yu R, Chen L, Liu Q, Lin J, Tan KL, Ng SC, Chan HSO, Xu GQ, Andy Hor TS (1998) Platinum deposition on carbon nanotubes via chemical modification. Chem Mater 10:718–722CrossRefGoogle Scholar
  12. 12.
    Sham ML, Kim JK (2006) Surface functionalities of multi-wall carbon nanotubes after UV/ozone and TETA treatments. Carbon 44:768–777CrossRefGoogle Scholar
  13. 13.
    Ávila-Orta CA, Cruz-Delgado VJ, Neira-Velázquez MG, Hernández-Hernández E, Méndez-Padilla MG, Medellín-Rodríguez FJ (2009) Surface modification of carbon nanotubes with ethylene glycol plasma. Carbon 47:1916–1921CrossRefGoogle Scholar
  14. 14.
    Wang SC, Chang KS, Yuan CJ (2009) Enhancement of electrochemical properties of screen-printed carbon electrodes by oxygen plasma treatment. Electrochim Acta 54:4937–4943CrossRefGoogle Scholar
  15. 15.
    Star A, Stoddart JF, Steuerman D et al (2001) Preparation and properties of polymer-wrapped single-walled carbon nanotubes. Angew Chem Int Ed 40:1721–1725CrossRefGoogle Scholar
  16. 16.
    Kostarelos K, Lacerda L, Pastorin G et al (2007) Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat Nanotechnol 2:108–113PubMedCrossRefGoogle Scholar
  17. 17.
    Sahoo NG, Jung YC, Yoo HJ, Cho JW (2006) Effect of functionalized carbon nanotubes on molecular interaction and properties of polyurethane composites. Macromol Chem Phys 207:1773–1780CrossRefGoogle Scholar
  18. 18.
    Wang Y, Wu J, Wei F (2003) A treatment method to give separated multi-walled carbon nanotubes with high purity, high crystallization and a large aspect ratio. Carbon 41:2939–2948CrossRefGoogle Scholar
  19. 19.
    Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49:24–36CrossRefGoogle Scholar
  20. 20.
    Bonifazi D, Nacci C, Marega R, Campidelli S, Ceballos G, Modesti S, Meneghetti M, Prato M (2006) Microscopic and spectroscopic characterization of paintbrush-like single-walled carbon nanotubes. Nano Lett 6:1408–1414PubMedCrossRefGoogle Scholar
  21. 21.
    Ziegler KJ, Gu Z, Peng H, Flor EL, Hauge RH, Smalley RE (2005) Controlled oxidative cutting of single-walled carbon nanotubes. J Am Chem Soc 127:1541–1547PubMedCrossRefGoogle Scholar
  22. 22.
    Jordan ME, Deery HJ, Hagopian E, Williams FR (1968) Process for producing furnace black pigments. Patent no. US3383232AGoogle Scholar
  23. 23.
    Boonstra BB, Dannenberg EM, Rossman RP, Williams FR (1971) Process for treating furnace carbon black. Patent no. US3565657AGoogle Scholar
  24. 24.
    Jean-Baptiste AD (1962) Water-soluble carbon black and production thereof. Patent no. US3023118AGoogle Scholar
  25. 25.
    Curtis JC, Taylor RL, Joyce GA (2000) Hydrogen peroxide oxidation of carbon black. Patent no. US6120594 AGoogle Scholar
  26. 26.
    Nagasawa T (1995) Water-based pigment ink and process for producing the same. Patent no. EP 0 688836 A2Google Scholar
  27. 27.
    Ito H, Momose M, Hayashi H, Ito S (2002) Aqueous pigment dispersion water base ink composition and recording method using the ink composition. Patent no. US6488753 B1Google Scholar
  28. 28.
    Sekiyama M, Saitoh T, Kirino T (2014) Method for producing aqueous dispersion of surface treated carbon black particles and aqueous dispersion of surface treated carbon black particles. Patent no. US20140000488A1Google Scholar
  29. 29.
    Adams CE, Belmont JA (1999) Modified carbon products and inks and coatings containing modified carbon products. Patent no. US5885335AGoogle Scholar
  30. 30.
    So HH, Cho JW, Sahoo NG (2007) Effect of carbon nanotubes on mechanical and electrical properties of polyimide/carbon nanotubes nanocomposites. Eur Polym J 43:3750–3756CrossRefGoogle Scholar
  31. 31.
    Spitalsky Z, Krontiras CA, Georga SN, Galiotis C (2009) Effect of oxidation treatment of multiwalled carbon nanotubes on the mechanical and electrical properties of their epoxy composites. Compos Part A 40:778–783CrossRefGoogle Scholar
  32. 32.
    Simsek Y, Ozyuzer L, Seyhan AT, Tanoglu M, Schulte K (2007) Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites. J Mater Sci 42:9689–9695CrossRefGoogle Scholar
  33. 33.
    Karl A (2007) Method for producing post treated carbon black. Patent no. US 7217405B2Google Scholar
  34. 34.
    Park YS, Choi YC, Kim KS, Chung DC (2001) High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon 39:655–661CrossRefGoogle Scholar
  35. 35.
    Li C, Wang D, Liang Wang TX, Wu J, Hu X, Liang J (2004) Oxidation of multiwalled carbon nanotubes by air: benefits for electric double layer capacitors. Power technol 142:175–179CrossRefGoogle Scholar
  36. 36.
    Park WK, Kim JH, Lee SS, Kim J, Lee GW, Park M (2005) Effect of carbon nanotube pre-treatment on dispersion and electrical properties of melt mixed multi-walled carbon nanotubes/poly(methyl methacrylate) composites. Macromol Res 13:206–211CrossRefGoogle Scholar
  37. 37.
    Yuen SM, Ma CCM, Lin YY, Kuan HC (2007) Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos Sci Technol 67:2564–2573CrossRefGoogle Scholar
  38. 38.
    Melore PJ, Eckert FJ (1966) Preparation of long flow carbon black. Patent no. US3245820Google Scholar
  39. 39.
    Sutherland I, Sheng E, Bradley RH, Freakley PK (1996) Effects of ozone oxidation on carbon black Surfaces. J Mater Sci 31:5651–5655CrossRefGoogle Scholar
  40. 40.
    Stenger F, Bergemann K, Nagel M (2013) Process for after treating carbon black. US patent no. US8574527 B2Google Scholar
  41. 41.
    Yeh AG, et al. (2005) Self dispersing pigment and process for making and use of same. Patent no. US6852156B2Google Scholar
  42. 42.
    Vennerberg DC, Quirino RL, Jang Y, Kessler MR (2014) Oxidation behavior of multiwalled carbon nanotubes fluidized with ozone. ACS Appl Mater Interfaces 6:1835–1842PubMedCrossRefGoogle Scholar
  43. 43.
    Mawhinney DB, Naumenko V, Kuznetsova A, Yates JT, Liu J, Smalley RE (2000) Infrared spectral evidence for the etching of carbon nanotubes: ozone oxidation at 298 K. J Am Chem Soc 122:2383–2384CrossRefGoogle Scholar
  44. 44.
    Cai L, Bahr JL, Yao Y, Tour JM (2002) Ozonation of single- walled carbon nanotubes and their assemblies on rigid self-assembled monolayers. Chem Mater 14:4235–4241CrossRefGoogle Scholar
  45. 45.
    Chen Z, Ziegler KJ, Shaver J, Hauge RH, Smalley RE (2006) Cutting of single-walled carbon nanotubes by ozonolysis. J Phys Chem B 110:11624–11627PubMedCrossRefGoogle Scholar
  46. 46.
    Lu X, Zhang L, Xu X, Wang N, Zhang QJ (2002) Can the sidewalls of single-wall carbon nanotubes be ozonized? J Phys Chem B 106:2136–2139CrossRefGoogle Scholar
  47. 47.
    Banerjee S, Wong SS (2002) Rational sidewall functionalization and purification of single-walled carbon nanotubes by solution-phase ozonolysis. J Phys Chem B 106:12144–12151CrossRefGoogle Scholar
  48. 48.
    Hernadi K, Siska A, Thien-Nga L, Forro L, Kiricsi I (2001) Reactivity of different kinds of carbon during oxidative purification of catalytically prepared carbon nanotubes. Solid State Ion 141–142:203–209CrossRefGoogle Scholar
  49. 49.
    Criegee R (1975) Mechanism of ozonolysis. Angew Chem Int Ed 14(11):745–752CrossRefGoogle Scholar
  50. 50.
    Simmons JM, Nichols BM, Baker SE, Marcus MS, Castellini OM, Lee CS, Hamers RJ, Eriksson MA (2006) Effect of ozone oxidation on single-walled carbon nanotubes. J Phys Chem 110:7113–7118CrossRefGoogle Scholar
  51. 51.
    Byl O, Liu J, Yates JT (2005) Etching of carbon nanotubes by ozone: a surface area study. Langmuir 21:4200–4204PubMedCrossRefGoogle Scholar
  52. 52.
    Hemraj-Benny T, Bandosz TJ, Wong SS (2008) Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single-walled carbon nanotubes. J Colloid Interface Sci 317:375–382PubMedCrossRefGoogle Scholar
  53. 53.
    Peng K, Liu LQ, Li H, Meyer H, Zhang Z (2011) Room temperature functionalization of carbon nanotubes using an ozone/water vapor mixture. Carbon 49:70–76CrossRefGoogle Scholar
  54. 54.
    Staehelin J, Hoigne J (1982) Decomposition of ozone in water: rate of initiation by hydroxide ions and hydrogen peroxide. Environ Sci Technol 16:676–681CrossRefGoogle Scholar
  55. 55.
    Sotelo JL, Beltran FJ, Benitez FJ, Beltran-Heredia J (1987) Ozone decomposition in water: kinetic study. Ind Eng Chem Res 26:39–43CrossRefGoogle Scholar
  56. 56.
    Morales-Lara F, Perez-Mendoza MJ, Altmajer-Vaz D, Garca-Roman M, Melguizo M, Lopez-Garzon FJ, Domingo-Garca M (2013) Functionalization of multiwall carbon nanotubes by ozone at basic pH. Comparison with oxygen plasma and ozone in gas phase. J Phys Chem C 117:11647–11655CrossRefGoogle Scholar
  57. 57.
    Alder MR, Hill GC (1950) The kinetics and mechanism of hydroxide ion catalyzed ozone decomposition in aqueous solution. J Am Chem Soc 72:1884–1886CrossRefGoogle Scholar
  58. 58.
    Sehested K, Cotfltzen H, Holcman J, Flscher CH, Hart EJ (1991) The primary reaction in the decomposition of ozone in acidic aqueous solutions. Environ Sci Technol 25(9):1589–1596CrossRefGoogle Scholar
  59. 59.
    Li W, Bai Y, Zhang YK, Sun ML, Cheng RM, Xu XC et al (2005) Effect of hydroxyl radical on the structure of multi-walled carbon nanotubes. Synth Met 155:509–515CrossRefGoogle Scholar
  60. 60.
    Tressaud A, Shirasaki T, Nanse G, Papirer E (2002) Fluorinated carbon blacks: influence of the morphology of the starting material on the fluorination mechanism. Carbon 40:217–220CrossRefGoogle Scholar
  61. 61.
    Schukin LI, Kornievich MV, Vartapetjan RS, Beznisko SI (2002) Low-temperature plasma oxidation of activated carbons. Carbon 40:2028–2030CrossRefGoogle Scholar
  62. 62.
    Donnet JB, Wang WD, Vidal A (1994) Observation of plasma treated carbon black surfaces by scanning tunnelling microscopy. Carbon 32:199–2006CrossRefGoogle Scholar
  63. 63.
    Bruser V, Heintze M, Brandl W, Marginean G, Bubert H (2004) Surface modification of carbon nanofibres in low temperature plasmas. Diamond Relat Mater 13:1177–1181CrossRefGoogle Scholar
  64. 64.
    Favia P, Vietro ND, Mundo RD, Fracassi F, Agostino R (2006) Tuning the acid/base surface character of carbonaceous materials by means of cold plasma treatments. Plasma Processes Polym 3:66–74CrossRefGoogle Scholar
  65. 65.
    Heintze M, Bruser V, Brandl W, Marginean G, Bubert H, Haiber S (2003) Surface functionalization of carbon nano-fibers in fluidized bed plasma. Surf Coat Technol 174–175:831–834CrossRefGoogle Scholar
  66. 66.
    Sawada Y, Kogoma M (1997) Plasma-polymerized tetrafluoroethylene coatings on silica particles by atmospheric-pressure glow discharge. Powder Technol 90:245–250CrossRefGoogle Scholar
  67. 67.
    Okpalugo TIT, Papakonstantinou P, Murphy H, Mclaughlin J, Brown NMD (2005) Oxidative functionalization of carbon nanotubes in atmospheric pressure filamentary dielectric barrier discharge (APDBD). Carbon 43:2951–2959CrossRefGoogle Scholar
  68. 68.
    Hanabusa T, Uemiya S, Kojima T (1997) Surface modification of particles in a plasma jet fluidized bed reactor. Surf Coat Technol 88:226–231CrossRefGoogle Scholar
  69. 69.
    Erden S, Ho KKC, Lamoriniere S, Lee AF, Yildiz H, Bismark A (2010) Continuous atmospheric plasma oxidation of carbon fibres: Influence on the fibre surface and bulk properties and adhesion to polyamide 12. Plasma Chem Plasma Process 30:471–487CrossRefGoogle Scholar
  70. 70.
    Ho KKC, Lee AF, Lamoriniere S, Bismarck A (2008) Continuous atmospheric plasma fluorination of carbon fibres. Compos Part A Appl Sci Manuf 39:364–373CrossRefGoogle Scholar
  71. 71.
    Utegulov ZN, Mast DB (2005) Functionalization of single walled carbon nanotubes using isotropic plasma treatment: resonant ruman spectroscopy study. J Appl Phys 97:104324CrossRefGoogle Scholar
  72. 72.
    Bubert H, Haiber S, Brandl W, Marginean G, Heintze M, Bruser V (2003) Characterization of the uppermost layer of plasma-treated carbon nanotubes. Diamond Relat Mater 12:811–815CrossRefGoogle Scholar
  73. 73.
    Haiber S et al (2003) Analysis of functional groups on the surface of plasma—treated carbon nanofibers. Bioanal Chem 375:875–883CrossRefGoogle Scholar
  74. 74.
    Chirila V, Marginean TG, Brandl W (2005) Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties. Surf Coat Technol 200:548–551CrossRefGoogle Scholar
  75. 75.
    Chen J, Hamon MA, Hu H et al (1998) Solution properties of single-walled carbon nanotubes. Science 282:95–98PubMedCrossRefGoogle Scholar
  76. 76.
    Li L, Lin R, He H, Sun M, Jiang L, Gao M (2014) Interaction of amidated single-walled carbon nanotubes with protein by multiple spectroscopic methods. J Lumin 145:125–131CrossRefGoogle Scholar
  77. 77.
    Xu M, Huang Q, Chen Q, Guo P, Sun Z (2003) Synthesis and characterization of octadecylamine grafted multi-walled carbon nanotubes. Chem Phys Lett 375:598–604CrossRefGoogle Scholar
  78. 78.
    Pompeo F, Resasco DE (2002) Water solubilization of single-walled carbon nanotubes by functionalization with glucosamine. Nano Lett 2:369–373CrossRefGoogle Scholar
  79. 79.
    Liu L, Zhang S, Hu T, Guo ZX, Ye C, Dai L, Zhu D (2002) Solubilized multi-walled carbon nanotubes with broadband optical limiting effect. Chem Phys Lett 359:191–195CrossRefGoogle Scholar
  80. 80.
    Wu W, Li J, Liu L, Yanga L, Guo ZX, Dai L, Zhu D (2002) The photoconductivity of PVK-carbon nanotube blends. Chem Phys Lett 364:196–199CrossRefGoogle Scholar
  81. 81.
    Hamon MA, Chen J, Hu H, Chen Y, Itkis ME, Rao AM, Eklund PC, Haddon RC (1999) Dissolution of single-walled carbon nanotubes. Adv Mater 11:834–840CrossRefGoogle Scholar
  82. 82.
    Hamon MA, Hu H, Bhowmik P, Niyogi S, Zhao B, Itkis ME, Haddon RC (2001) End-group and defect analysis of soluble single-walled carbon nanotubes. Chem Phys Lett 347:8–12CrossRefGoogle Scholar
  83. 83.
    Gao Y, Kyratzis I (2008) Covalent immobilization of proteins on carbon nanotubes using the cross-linker 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide—a critical assessment. Bioconjug Chem 19:1945–1950PubMedCrossRefGoogle Scholar
  84. 84.
    Sano M, Kamino A, Okamura J, Shinkai S (2001) Ring closer of carbon nanotubes. Science 293:1299–1301PubMedCrossRefGoogle Scholar
  85. 85.
    Huang WJ, Taylor S, Fu KF, Lin Y, Zhang DH, Hanks TW, Rao AM, Sun YP (2002) Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett 2:311–314CrossRefGoogle Scholar
  86. 86.
    Jiang KY, Schadler LS, Siegel RW, Zhang XJ, Zhang HF, Terrones M (2004) Protein immobilization on carbon nanotubes via a two-step process of diimide-activated amidation. J Mater Chem 14:37–39CrossRefGoogle Scholar
  87. 87.
    Jeykumari DRS, Ramaprabhu S, Narayanan SS (2007) A thionine functionalized multiwalled carbon nanotube modified electrode for the determination of hydrogen peroxide. Carbon 45:1340–1353CrossRefGoogle Scholar
  88. 88.
    Wang Y, Iqbal Z, Mitra S (2005) Microwave-induced rapid chemical functionalization of single-walled carbon nanotubes. Carbon 43:1015–1020CrossRefGoogle Scholar
  89. 89.
    Shao L, Bai Y, Huang X, Gao Z, Meng L, Huang Y, Ma J (2009) Multi-walled carbon nanotubes (MWCNTs) functionalized with amino groups by reacting with supercritical ammonia fluids. Mater Chem Phys 116:323–326CrossRefGoogle Scholar
  90. 90.
    Kundu S, Xia W, Busser W, Becker M, Schmidt DA, Havenith M, Muhler M (2010) The formation of nitrogen-containing functional groups on carbon nanotube surfaces: a quantitative XPS and TPD study. Phys Chem Phys 12:4351–4359CrossRefGoogle Scholar
  91. 91.
    Ford WE, Jung A, Hirsch A, Graupner R, Scholz F, Yasuda A, Wessels JM (2006) Urea-melt solubilization of single-walled carbon nanotubes. Adv Mater 18:1193–1197CrossRefGoogle Scholar
  92. 92.
    Aizawa M, Shaffer MSP (2003) Silylation of multi-walled carbon nanotubes. Chem Phys Lett 368:121–124CrossRefGoogle Scholar
  93. 93.
    Ma PC, Kim JK, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocompositos. Compos Sci Technol 67:2965–2972CrossRefGoogle Scholar
  94. 94.
    Yuen SM, Ma CCM, Chiang CL, Teng CC, Yu YH (2008) Poly(vinyltriethoxysilane) modified MWCNT/polyimide nanocomposites—preparation, morphological, mechanical, and electrical properties. J Polym Sci Part A Polym Chem 46:803–816CrossRefGoogle Scholar
  95. 95.
    Vast L, Lallemand F, Colomer JF, Van Tendeloo G, Fonseca A, Mekhalif Z, Delhalle J (2009) Multiwalled carbon nanotubes functionalized with 7-octenyltrichlorosilane and n-octyltrichlorosilane: dispersion in Sylgard®184 silicone and young’s modulus. J Mater Sci 44:3476–3482CrossRefGoogle Scholar
  96. 96.
    Wood W, Kumar S, Zhong WH (2010) Synthesis of organosilane-modified carbon nanofibers and influence of silane coating thickness on the performance of polyethylene nanocomposites. Macromol Mater Eng 295:1125–1135CrossRefGoogle Scholar
  97. 97.
    Lee JH, Kathi J, Rhee KY, Lee JH (2010) Wear properties of 3-aminopropyl triethoxysilane-functionalized carbon nanotubes reinforced ultra high molecular weight polyethylene nanocomposites. Polym Eng Sci 50:1433–1439CrossRefGoogle Scholar
  98. 98.
    Gaspar H, Pereira C, Rebelo SLH, Pereira MFR, Figueiredo JL, Freire C (2011) Understanding the silylation reaction of multi-walled carbon nanotubes. Carbon 49:3441–3453CrossRefGoogle Scholar
  99. 99.
    Lin TW, Salzmann CG, Shao LD, Yu CH, Green MLH, Tsang SC (2009) Polyethylene glycol grafting and attachment of encapsulated magnetic iron oxide silica nanoparticles onto chlorosilanized single-wall carbon nanotubes. Carbon 47:1415–1420CrossRefGoogle Scholar
  100. 100.
    Hemraj-Benny T, Wong SS (2006) Silylation of single-walled carbon nanotubes. Chem Mater 18:4827–4839CrossRefGoogle Scholar
  101. 101.
    Velasco-Santos C, Martinez-Hernandez AL, Lozada-Cassou M, Alvarez-Castillo A, Castano VM (2002) Chemical funtionalization of carbon nanotubes through an organosilane. Nanotechnol 13:495CrossRefGoogle Scholar
  102. 102.
    Bag DS, Dubey R, Zhang N, Xie J, Varadan VK, Lal D, Mathur GN (2004) Chemical functionalization of carbon nanotubes with 3-methacryloxypropyl trimethoxysilane (3-MPTS). Smart Mater Struct 13:1263CrossRefGoogle Scholar
  103. 103.
    Velasco-Santos C, Martinez-Hernandez AL, Brostow W, Castano VM (2011) Influence of silanization treatment on thermomechanical properties of multiwalled carbon nanotubes: poly(methylmethacrylate) nanocomposites grafting of polymers chain. J Nanomater 2011:1–9CrossRefGoogle Scholar
  104. 104.
    Zhu J, Wei S, Ryu J, Budhathoki M, Liang G, Guo Z (2010) In situ stabilized carbon nanofiber (CNF) reinforced epoxy nanocomposites. J Mater Chem 20:4937–4948CrossRefGoogle Scholar
  105. 105.
    Hu X, Su E, Zhu B, Jia J, Yao P, Bai Y (2014) Preparation of silanized graphene/poly(methyl methacrylate) nanocomposites in situ copolymerization and its mechanical properties. Compos Sci Technol 97:6–11CrossRefGoogle Scholar
  106. 106.
    Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37CrossRefGoogle Scholar
  107. 107.
    Scheibe B, Borowiak-Palen E, Kalenczuk RJ (2009) Effect of the silanization processes on the properties of oxidized multiwalled carbon nanotubes. Acta Phys Pol A 116:S150–S155CrossRefGoogle Scholar
  108. 108.
    Palencia C, Rubio F, Merino C, Rubio J, Oteo JL (2009) Study of the silanization process in CNFs: time, temperature, silane type and concentration influence. J Nano Res 4:33–43CrossRefGoogle Scholar
  109. 109.
    Liu T, Wood W, Zhong WH (2011) Sensitivity of dielectric properties to wear process on carbon nanofiber/high-density polyethylene composites. Nanoscale Res Lett 6:7PubMedGoogle Scholar
  110. 110.
    Yuen SM, Ma CCM, Chiang CL (2008) Silane grafted MWCNT/polyimide composites—preparation, morphological and electrical properties. Compos Sci Technol 68:2842–2848CrossRefGoogle Scholar
  111. 111.
    Wang DH, Sihn S, Roy AK, Baek JB, Tan LS (2010) Nanocomposites based on vapor-grown carbon nanofibers and an epoxy: functionalization, preparation and characterization. Eur Polym J 46:1404–1416CrossRefGoogle Scholar
  112. 112.
    Qu L, Lin Y, Hill DE, Zhou B (2004) Polyimide-functionalized carbon nanotubes: synthesis and dispersion in nanocomposite films. Macromolecules 37:6055–6060CrossRefGoogle Scholar
  113. 113.
    Yuen SM, Ma CCM, Chiang CL, Lin YY, Teng CC (2007) Preparation and morphological, electrical, and mechanical properties of polyimide-grafted MWCNT/polyimide composite. J Polym Sci Part A Polym Chem 45:3349–3358CrossRefGoogle Scholar
  114. 114.
    Viswanathan G, Chakrapani N, Yang H et al (2003) Single-step in situ synthesis of polymer-grafted single-wall nanotube composites. J Amer Chem Soc 125:9258–9259CrossRefGoogle Scholar
  115. 115.
    Malikov EY, Muradov MB, Akperov OH, Eyvazova GM, Puskas R, Madarász D, Nagy L, Kukovecz A, Kónya Z (2014) Synthesis and characterization of polyvinyl alcohol based multiwalled carbon nanotu be nanocomposites. Phys E 61:129–134CrossRefGoogle Scholar
  116. 116.
    Chen S, Wu G, Liu Y, Long D (2006) Preparation of poly(acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique. Macromol 39:330–334CrossRefGoogle Scholar
  117. 117.
    Geng Y, Liu MY, Li J, Shi XM, Kim JK (2008) Effects of surfactant treatment on mechanical and electrical properties of CNT/epoxy nanocomposites. Compos Part A 39:1876–1883CrossRefGoogle Scholar
  118. 118.
    Mao J, Liu Q, Lv X et al (2007) A water-soluble hybrid material of single-walled carbon nanotubes with an amphiphilic poly(phenyleneethynylene): preparation, characterization, and photovoltaic properties. J Nanosci Nanotech 7:2709–2718CrossRefGoogle Scholar
  119. 119.
    Herranz MA, Ehli C, Campidelli S, Guti Errez M, Hug GL, Ohkubo K, Fukuzumi S, Prato M, Martín N, Guldi DM (2008) Spectroscopic characterization of photolytically generated radical ion pairs in single-wall carbon nanotubes bearing surface-immobilized tetrathiafulvalenes. J Am Chem Soc 130:66–73PubMedCrossRefGoogle Scholar
  120. 120.
    Kavakka JS, Heikkinen S, Kilpelainen I, Mattila M, Lipsanen H, Helaja J (2007) Noncovalent attachment of pyro-pheophorbide a to a carbon nanotube. Chem Commun 5:519–521CrossRefGoogle Scholar
  121. 121.
    O’Connell MJ, Boul P, Ericson LM et al (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342:265–271CrossRefGoogle Scholar
  122. 122.
    Chen RJ, Zhang Y, Wang D, Dai H (2001) Noncovalent sidewall functionalization of single-walled carbon nanotubes for protein immobilization. J Amer Chem Soc 123:3838–3839CrossRefGoogle Scholar
  123. 123.
    Bonard JM et al (1997) Purification and size-selection of carbon nanotubes. Adv Mater 9:827–831CrossRefGoogle Scholar
  124. 124.
    Richard C, Balavoine F, Schultz P, Ebbesen TW, Mioskowski C (2003) Supramolecular self-assembly of lipid derivatives on carbon nanotubes. Science 300:775–778PubMedCrossRefGoogle Scholar
  125. 125.
    Islam MF, Rojas E, Bergey DM, Johnson AT, Yodh AG (2002) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273CrossRefGoogle Scholar
  126. 126.
    Kang M, Myung SJ, Jin HJ (2006) Nylon 610 and carbon nanotube composite by in situ interfacial polymerization. Polymer 47:3961–3966CrossRefGoogle Scholar
  127. 127.
    Guldi DM, Martin N (2010) Carbon nanotubes and related structures—synthesis, characterization, functionalization, and applications, p 351Google Scholar
  128. 128.
    Porter AE, Gass M, Muller K, Skepper JN, Midgley PA, Welland M (2007) Direct imaging of single-walled carbon nanotubes in cells. Nat Nanotechnol 2:713–717PubMedCrossRefGoogle Scholar
  129. 129.
    Kim JK, Kim Y, Park S, Ko H, Kim Y (2016) Encapsulation of organic active materials in carbon nanotubes for application to high-electrochemical-performance sodium batteries. Energy Environ Sci 9:1264–1269CrossRefGoogle Scholar
  130. 130.
    Cui X, Wang Y, Jiang G, Zhao Z, Xu C, Duan A, Liu J, Wei Y, Bai W (2014) The encapsulation of CdS in carbon nanotubes for stable and efficient photocatalysis. J Mater Chem A 2:20939–20946CrossRefGoogle Scholar
  131. 131.
    Meng L, Zhang X, Lu Q, Fei Z, Dyson PJ (2012) Single walled carbon nanotubes as drug delivery vehicles: targeting doxorubicin to tumors. Biomaterials 33:1689–1698PubMedCrossRefGoogle Scholar
  132. 132.
    Pantarotto D, Briand JP, Prato M, Bianco A (2004) Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chem Commun 10:16–17CrossRefGoogle Scholar
  133. 133.
    Kam NWS, Liu Z, Dai H (2005) Carbon nanotubes as intracellular transporters for proteins and DNA: an investigation of the uptake mechanism and pathway. Angew Chem 44:1–6CrossRefGoogle Scholar
  134. 134.
    Hampel S, Kunze D, Haase D, Kramer K, Rauschenbach M, Ritschel M et al (2008) Carbon nanotubes filled with a chemotherapeutic agent: a nanocarrier mediates inhibition of tumor cell growth. Nanomedicine 3:175–178PubMedCrossRefGoogle Scholar
  135. 135.
    Li J, Yap SQ, Yoong SL, Nayak TR, Chandra GW, Ang WH et al (2012) Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon 50:1625–1634CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Lalatendu Nayak
    • 1
    Email author
  • Mostafizur Rahaman
    • 2
  • Radhashyam Giri
    • 3
  1. 1.Phillips Carbon Black Ltd.KolkataIndia
  2. 2.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Centre for Biopolymer Science and Technology (CBPST) a Unit of CIPETKochiIndia

Personalised recommendations