Electrical and Electronic Application of Polymer–Carbon Composites

  • Sambhu Bhadra
  • Mostafizur RahamanEmail author
  • P. Noorunnisa Khanam
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Carbon, the most important element in the periodic table, has various structures, such as carbon black, graphite, graphene, fullerenes, carbon nanotubes, etc. These possess an excellent physical and chemical properties. As a result, they can be used in numerous applications directly or using as a filler in the polymer composite. In this chapter, the application of different carbon materials as specialized fillers in the polymer composites has been discussed. This chapter includes the discussion on various types of carbon fillers, their basic features, their composites with polymers, percolation phenomena for electrically conductive composites and finally electrical and electronic applications of polymer/carbon composites. Applications of polymer/carbon composites in microelectronics, transparent conductive coating and flexible conductors, displays, organic light-emitting diode (OLED), electroluminescent device, photovoltaic device, sensor, actuator, electrode, battery, capacitor, supercapacitor or ultra-capacitor, ESD and EMI shielding, memory devices, field-effect transistor are discussed in details.


Polymer composites Carbons Electrical conductivity Electrical percolation Electrical applications Electronic applications 


  1. 1.
    Scharff P (1998) New carbon materials for research and technology. Carbon 36(5–6):481–486CrossRefGoogle Scholar
  2. 2.
    Dobrzaski LA (2002) Fundamentals of materials science and physical metallurgy. In: Engineering materials with elements of materials design, WNT, WarsawGoogle Scholar
  3. 3.
    Skoczkowski K (1995) The production technology of carbon-graphite elements. Slask, Katowice, pp 20–177Google Scholar
  4. 4.
    Kuilla T, Bhadra S, Yao D, Kim NH, Bose S, Lee JH (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35:1350–1375CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Lalwani G, Sitharaman B (2013) Multifunctional fullerene and metallofullerene based nanobiomaterials. Nano LIFE 3(3):1342003 (22 pages)CrossRefGoogle Scholar
  7. 7.
    Przygocki W, Wlochowicz A (2001) Fullerenes and nanotubes: properties and applications. WNT, WarsawGoogle Scholar
  8. 8.
    Huczko A (2004) Carbon nanotubes. Black diamonds of the twenty-first century, BEL Studio, WarsawGoogle Scholar
  9. 9.
    Zielinski T, Kijenski J (2004) Technical-grade plasma carbon black used as an active modifier of plastics. Chem Ind 83(10):517–521Google Scholar
  10. 10.
    Sohi NJS, Bhadra S, Khastgir D (2011) The effect of different carbon fillers on the electrical conductivity of ethylene vinyl acetate copolymer-based composites and the applicability of different conductivity models. Carbon 49:1349–1361CrossRefGoogle Scholar
  11. 11.
    Endo M, Strano MS, Ajayan PM (2008) Potential applications of carbon nanotubes. In: Carbon nanotubes. Advanced topics in the synthesis, structure, properties and applications. Springer, Berlin, Germany, pp 12–61Google Scholar
  12. 12.
    Mighri F, Huneault MA, Champagne MG (2004) Electrically conductive thermoplastic blends for injection and compression molding of bipolar plates in fuel cell application. Polym Eng Sci 44(9):1755–1765CrossRefGoogle Scholar
  13. 13.
    Njuguma J, Pielichowski K (2003) Polymer nanocomposites for aerospace applications: properties. Adv Eng Mat 5(11):769–778CrossRefGoogle Scholar
  14. 14.
    Chakrapani N, Chris J, Matayabas JR, Wakharkar V (2010) Applications of smart polymer composites to integrated circuit packaging. US 20100237513 A1Google Scholar
  15. 15.
    Chakrapani N, Chris J, Matayabas JR, Wakharkar V (2011) Applications of smart polymer composites to integrated circuit packaging, US 7952212 B2Google Scholar
  16. 16.
    Lingamneni S, Marconnet AM, Goodson KE (2013) 3D Packaging materials based on graphite nanoplatelet and aluminum nitride nanocomposites. In: Proceedings of the ASME 2013 international mechanical engineering congress & exposition IMECE 2013 13–21 Nov 2013, San Diego, California, USA, Final Paper IMECE 2013-66419Google Scholar
  17. 17.
    Yeh TH, Chang HY, Liou ST (2012) Flexible printed circuit boards including carbon nanotubes bundle. US 8,164,000 B2Google Scholar
  18. 18.
  19. 19.
    Kreupl F, Graham AP, Liebau M, Duesberg GS, Seidel R, Unger E (2004) Carbon nanotubes for interconnect applications. In: Proceedings of the IEEE International Electron Devices Meeting (IEDM’04), pp. 683–686, December 2004Google Scholar
  20. 20.
    Suh DW (2012) Carbon nanotubes solder composite for high performance interconnect. US 8,100,314 B2Google Scholar
  21. 21.
    Li J, Lumpp JK (2006) Electrical and mechanical characterization of carbon nanotube filled conductive adhesive. In: Proceedings of aerospace conference. IEEE, NJ, 2006, pp 1–6Google Scholar
  22. 22.
    Lin XC, Lin F (2004) Improvement on the properties of silver-containing conductive adhesives by the addition of carbon nanotube. In: Proceedings of high density microsystem design and packaging. IEEE, NJ, 2004, pp 382–384Google Scholar
  23. 23.
    Bullock S, Vanderwlel RW (2012) Electrically conductive polymer compositions containing metal particles and a graphene and methods for production and use thereof. US 8167190 B1Google Scholar
  24. 24.
    Yim BS, Oh SH, Kim J, Kim J, Kim JM (2012) Characteristics of graphene-filled solderable isotropically conductive adhesive (ICA). Mater Trans 53(3):578–581CrossRefGoogle Scholar
  25. 25.
    Bertram A, Beasley K, De La Torre W (1992) An overview of navy composite developments for thermal management. Naval Eng J 104:276CrossRefGoogle Scholar
  26. 26.
    Fleming TF, Rwey WC, Proc. SPIE The international society for optical engineering, 1997 (1993) 136–147Google Scholar
  27. 27.
    Fleming TF, Levan CD, Riley WC (1995) Proceedings technical conference, international electronics packaging conference pp 493–503Google Scholar
  28. 28.
    Ibrahim AM (1992) SAMPEE electronics conference, pp 556–567Google Scholar
  29. 29.
    Spicer JWM, Wilson DW, Osinader R, Thomas J, Oni BO (1999) Proc. SPIE—the internal society for optical engineering, 3700: 40Google Scholar
  30. 30.
    Ebadi-Dehaghani H, Nazempour M (2012) Thermal conductivity of nanoparticles filled polymers.
  31. 31.
    Yoon YS, Oh MH, Kim AY, Kim N (2012) The development of thermal conductive polymer composites for heat sink. J Chem Chem Eng 6:515–519Google Scholar
  32. 32.
    Chiguma J, Johnson E, Shah P, Gornopolskaya N, Jones WE Jr (2013) Thermal diffusivity and thermal conductivity of epoxy-based nanocomposites by the laser flash and differential scanning calorimetry techniques. Open J Compos Mater 3:51–62CrossRefGoogle Scholar
  33. 33.
    Smaldone PL (1995) 27th international SAMPE technical conference, pp 819–829Google Scholar
  34. 34.
    Glatz JJ, Vrable DL, Schmedake T, Johnson C (1992) 6th international SAMPE electronics conference, pp 334–346Google Scholar
  35. 35.
    Berger M (2012) Graphene sets new record as the most efficient filler for thermal interface materials.
  36. 36.
    Khan MFS, Alexander AB (2011) Graphene—based nanocomposites as highly efficient thermal interface materials.
  37. 37.
    Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotubes filler for epoxy composites. Adv Mater 20:4740–4744CrossRefGoogle Scholar
  38. 38.
    Yu A, Ramesh P, Itkis ME, Elena B, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111:7565–7569CrossRefGoogle Scholar
  39. 39.
    Wu TY, Lin JC et al (2014) Aligned graphene sheets-polymer compositeand method for manufacturing the same. US 20140097380 A1Google Scholar
  40. 40.
    Balandin AA (2013) Graphene based thermal interface materials and methods of manufacturing the same. US 20140120399 A1Google Scholar
  41. 41.
    Nanocarbons and nanocarbon-filled polymer composites for electronic thermal management materials. School of Chemical and Process Engineering, Institute for Materials Research.
  42. 42.
    Okoth MO (2010) Synthesis of thermal interface materials made of metal decorated carbon nanotubes and polymers. Dissertation, Texas A&M UniversityGoogle Scholar
  43. 43.
    Arora H, Matayabas Jr JC (2014) Thermal interface material composition including polymeric matrix and carbon filler. US 8920919 B2Google Scholar
  44. 44.
    Heimann M, Wirts-Ruetters M, Boehme B, Wolter KJ (2008) Investigations of carbon nanotubes epoxy composites for electronics packaging. In: Proceedings of the 58th electronic components and technology conference (ECTC’08), May 2008, pp 1731–1736Google Scholar
  45. 45.
    Matthias H, Boehme B, Sebastian S, Wirts-Ruetters M, Wolter KJ (2009) CNTs—a comparable study of CNT-filled adhesives with common materials. In: Proceedings of the 59th electronic components and technology conference (ECTC’09), San Diego, California, USA, May 2009, pp 1871–1878Google Scholar
  46. 46.
    Mir IA, Kumar D (2012) Carbon nanotube-filled conductive adhesives for electronic applications. Nanosci Meth 1:183–193CrossRefGoogle Scholar
  47. 47.
    Adams JT, Yost BA (1991) Matrix filled with three-dimensional arrangement of carbon fibers, thermoplastic, thermosetting or elastomeric resins; bonding electronic components US 5026748 AGoogle Scholar
  48. 48.
    Transparent conducting film From Wikipedia.
  49. 49.
    Hong S, Myung S (2007) Nanotube electronics: a flexible approach to mobility. Nat Nanotech 2(4):207–208CrossRefGoogle Scholar
  50. 50.
    Dettlaff-Weglikowska U, Kaempgen M, Hornbostel B, Skakalova V, Wang J, Liang J, Roth S (2006) Conducting and transparent SWNT/polymer composites. Phys Stat Sol (b) 243:3440–3444CrossRefGoogle Scholar
  51. 51.
    Ferrer-Anglada N, Kaempgen M, Skakalova V, Dettlaf-Weglikowska U, Roth S (2004) Synthesis and characterization of carbon nanotube-conducting polymer thin films. Diamond Relat Mater 13:256–260CrossRefGoogle Scholar
  52. 52.
    Park C, Ounaies Z, Watson KA, Crooks RE, Smith J, Lowther SE, Connell JW, Siochi EJ, Harrison JS, Clair TLS (2002) Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem Phys Lett 364:303–308CrossRefGoogle Scholar
  53. 53.
    De S, Lyons PE, Sorel S, Doherty EM, King PJ, Blau WJ, Nirmalraj PN, Boland JJ, Scardaci V, Joimel J, Coleman JN (2009) Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites. ACS Nano 3:714–720PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Xu Y, Wang Y, Jiajie L, Huang Y, Ma Y, Wan X et al (2009) Ahybrid material of graphene and poly (3,4-ethyldioxythiophene) with high conductivity, flexibility, and transparency. Nano Res 2:343–348CrossRefGoogle Scholar
  55. 55.
    Liuid crystal display. From Wikipedia.
  56. 56.
    LED display. From Wikipedia.
  57. 57.
    John (2010) Nano C Inc., Liquid crystal display (LCD)-working.
  58. 58.
    Eren San S, Okutan M, Köysal O, Yerli Y (2008) Carbon nanoparticles in nematic liquid crystals. Chin Phys Lett 25(1):212CrossRefGoogle Scholar
  59. 59.
    Qi H, Hegmann T (2008) Impact of nanoscale particles and carbon nanotubes on current and future generations of liquid crystal displays. J Mater Chem 18:3288–3294CrossRefGoogle Scholar
  60. 60.
    OLED. From Wikipedia.
  61. 61.
    Moni-X Ltd. (2005) Organic light emitting diode (OLED).
  62. 62.
    Eda G, Unalan HE, Rupesinghe NL, Amaratunga GAJ, Chhowalla M (2008) Field emission from graphene based composite thin films. Appl Phys Lett 93:233502–233503CrossRefGoogle Scholar
  63. 63.
    Verma VP, Das S, Lahiri I, Choi W (2010) Large-area graphene on polymer film for flexible and transparent anode in field emission device. Appl Phys Lett 96:203108 / 1–3CrossRefGoogle Scholar
  64. 64.
    Woo HS, Czerw R, Webster S, Carroll DL, Ballato J, Strevens AE, O’Brien D, Blau WJ (2000) Hole blocking in carbon nanotube-polymer composite organic light-emitting diodes based on poly (m-phenylene vinylene-co-2, 5-dioctoxy-p-phenylene vinylene). Appl Phys Lett 77(9):1393–1395CrossRefGoogle Scholar
  65. 65.
    Li J, Hu L, Wang L, Zhou Y, Gruner G, Marks TJ (2006) Organic light-emitting diodes having carbon nanotube anodes. Nano Lett 6:2472–2477PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Yu Z, Niu X, Liu Z, Pei J (2011) Intrinsically stretchable polymer light-emitting devices using carbon nanotube-polymer composite electrodes. Adv Mater 23:3867–3994CrossRefGoogle Scholar
  67. 67.
    Ou ECW, Hu L, Raymond GCR, Soo OK, Pan J, Zheng Z, Park Y, Hecht D, Irvin G, Drzaic P et al (2009) Surface-modified nanotube anodes for high performance organic light-emitting diode. ACS Nano 3:2258–2264PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Singh JP, Saha U, Jaiswal R, Anand RS, Srivastava A, Goswami TH (2014) Enhanced polymer light-emitting diode property using fluorescent conducting polymer-reduced graphene oxide nanocomposite as active emissive layer. J Nanopart Res 16:1–20Google Scholar
  69. 69.
    Luo W, Chen W, Leng C, Huang D, Zhang Y, Yang J, Li Z, Shi H, Du C (2014) Graphene composite anode for flexible polymer light emitting diode. In: Proceedings SPIE 9272, optical design and testing VI, 927206, November 5, 2014Google Scholar
  70. 70.
    Lin CH, Chen KT, Ho JR, Cheng JWJ, Tsiang RCC (2012) PEDOT:PSS/graphene nanocomposite hole-injection layer in polymer light-emitting diodes. J Nanotech 2012:1–7CrossRefGoogle Scholar
  71. 71.
    Electroluminescence. From Wikipedia.
  72. 72.
    Xu Z, Wu Y, Hu B, Ivanov IN, Geohegan DB (2005) Carbon nanotube effects on electroluminescence and photovoltaic response in conjugated polymers. Appl Phys Lett 87:263118CrossRefGoogle Scholar
  73. 73.
    Hu B, Li D, Manandharam P, Fan Q, Kasilingam D, Calvert P (2012) CNT/conducting polymer composite conductors impart high flexibility to textile electroluminescent devices. J Mater Chem 22:1598–1605CrossRefGoogle Scholar
  74. 74.
    Photovoltaics. From Wikipedia.
  75. 75.
    Edward LO (2008) PV cell—working principle and applications.
  76. 76.
    O’Connell MJ, Boul P, Ericson LM, Huffman C, Wang Y, Haroz E, Kuper C, Tour J, Ausman KD, Smalley RE (2001) Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping. Chem Phys Lett 342(3–4):265–271CrossRefGoogle Scholar
  77. 77.
    Bhattacharyya S, Kymakis E, Amaratunga GAJ (2004) Photovoltaic properties of dye functionalized single-wall carbon nanotube/conjugated polymer devices. Chem Mater 16:4819–4823CrossRefGoogle Scholar
  78. 78.
    Ago H, Petritsch K, Shaffer MSP, Windle AH, Friend RH (1999) Composites of carbon nanotubes and conjugated polymers for photovoltaic devices. Adv Mater 11:1281–1285CrossRefGoogle Scholar
  79. 79.
    Kazaoui S, Minami N, Nalini B, Kim Y, Hara K (2005) Near-infrared photoconductive and photovoltaic devices using single-wall carbon nanotubes in conductive polymer films. J Appl Phys 98:084314CrossRefGoogle Scholar
  80. 80.
    Li C, Chen Y, Wang YIZ, Chhowalla M, Mitra S (2007) A fullerene-single wall carbon nanotube complex for polymer bulk heterojunction photovoltaic cells. J Mater Chem 17:2406–2411CrossRefGoogle Scholar
  81. 81.
    Pradhan B, Batabyal SK, Pal AJ (2006) Functionalized carbon nanotubes in donor/acceptortype photovoltaic devices. Appl Phys Lett 88:093106CrossRefGoogle Scholar
  82. 82.
    Kymakis E, Alexandrou I, Amaratunga GAJ (2003) High open-circuit voltage photovoltaic devices from carbon-nanotube-polymer composites. J Appl Phys 93:1764–1768CrossRefGoogle Scholar
  83. 83.
    Sariciftci NS, Smilowitz L, Heeger AJ, Wudl F (1992) Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 258:1474–1476CrossRefGoogle Scholar
  84. 84.
    Alley NJ, Liao KS, Andreoli E, Dias S, Dillon EP, Orbaek AW, Barron AR, Byrne HJ, Curran SA (2012) Effect of carbon nanotube-fullerene hybrid additive on P3HT:PCBM bulk-heterojunction organic photovoltaics. Synth Met 162(1–2):95–101CrossRefGoogle Scholar
  85. 85.
    Liu Z, Liu Q, Huang Y, Ma Y, Yin S, Zhang X, Sun W, Chen Y (2008) Organic photovoltaic devices based on a novel acceptor material: graphene. Adv Mater 20:3924–3930CrossRefGoogle Scholar
  86. 86.
    Hong W, Xu Y, Lu G, Li C, Shi G (2008) Transparent graphene/PEDOT-PSS composite films as counter electrodes of dye-sensitized solar cells. Electrochem Commun 10:1555–1558CrossRefGoogle Scholar
  87. 87.
    Eda G, Lin YY, Miller S, Chen CW, Su WF, Chhowalla M (2008) Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl Phys Lett 92:233305 / 1–3CrossRefGoogle Scholar
  88. 88.
    Wu J, Becerril HA, Bao Z, Liu Z, Chen Y, Peumans P (2008) Organic solar cells with solution processed graphene transparent electrodes. Appl Phys Lett 92:263302 / 1–3CrossRefGoogle Scholar
  89. 89.
    Lim SP, Pandikumar A, Lim YS, Huang NM, Lim HN (2014) In-situ electrochemically deposited polypyrrole nanoparticles incorporated reduced graphene oxide as an efficient counter electrode for platinum-free dye-sensitized solar cells. Sci Rep 4.
  90. 90.
    Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4(5):2865–2873PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Li SS, Tu KH, Lin CC, Chen CW, Chhowalla M (2010) Solution processable grapheme oxide as an efficient hole transport layer in polymer solar cells. ACS Nano 4:3169–3174PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Valentini L, Cardinali M, Bon SB, Bagnis D, Verdejo R, Lopez Manchado MA, Kenny JM (2010) Use of butylamine modified graphene sheets in polymer solar cells. J Mater Chem 20:995–1000CrossRefGoogle Scholar
  93. 93.
    Wang X, Zhi L, Müllen K (2008) Transparent, conductive grapheNe electrodes for dye-sensitized solar cells. Nano Lett 8:323–327PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Su Q (2012) Graphene based electrode materials for solar cell and electrochemical oxygen reduction. Ph.D. Dissertation, Max-Planck Institute for Polymer ResearchGoogle Scholar
  95. 95.
    Saranya K, Rameez Md, Subramania A (2015) Developments in conducting polymer based counter electrodes for dye-sensitized solar cells—an overview. Eur Polym J 66:207–227CrossRefGoogle Scholar
  96. 96.
    Wang J, Wang Y, He D, Wu H, Wang H, Zhou P, Fu M (2012) Influence of polymer/fullerene-graphene structure on organic polymer solar devices. Integr Ferroelect 137(1):1–9CrossRefGoogle Scholar
  97. 97.
    Hsu CL, Lin CT, Huang JH, Chu CW, Wei KH, Li LJ (2012) Layer-by-layer grapheme/TCNQ stacked films as conducting anodes for organic solar cells. ACS Nano 6(6):5031–5039PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Wang J, Wang Y, He D, Wu H, Wang H, Zhou P, Fu M, Jiang K, Chen W (2011) Organic photovoltaic devices based on an acceptor of solution-processable functionalized graphene. J Nanosci Nanotechnol 11(11):9432–9438PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Brabec CJ, Padinger F, Hummelen JC, Janssen RAJ, Sariciftci NS (1999) Realization of large area flexible fullerene-conjugated polymer photocells: a route to plastic solar cells. Synth Met 102(1–3):861–864CrossRefGoogle Scholar
  100. 100.
    Fromherz T, Padinger F, Gebeyehu D, Brabec C, Hummelen JC, Sariciftci NS (2000) Comparison of photovoltaic devices containing various blends of polymer and fullerene derivatives. Sol En Mat 63(1):61–68CrossRefGoogle Scholar
  101. 101.
    Gebeyehu D, Brabec CJ, Padinger F, Fromherz T, Hummelen JC, Badt D, Schindler H, Sariciftci NS (2001) The interplay of efficiency and morphology in photovoltaic devices based on interpenetrating networks of conjugated polymers with fullerenes. Synth Met 118(1–3):1–9CrossRefGoogle Scholar
  102. 102.
    Sensor. From Wikipedia.
  103. 103.
    Ansari S, Giannelis EP (2009) Functionalized graphene sheet—Poly(vinylidene fluoride) conductive nanocomposites. J Polym Sci Pt B Polym Phys 47:888–889CrossRefGoogle Scholar
  104. 104.
    Shan C, Yang H, Song J, Han D, Ivaska A, Niu L (2009) Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal Chem 81(6):2378–2382PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Xue R, Kang TF, Lu LP, Cheng SY (2013) Electrochemical sensor based on the graphene-nafion matrix for sensitive determination of organophosphorus pesticides. Anal Lett 46(1):131–141CrossRefGoogle Scholar
  106. 106.
    Zhu J, Wei S, Ryu J, Guo Z (2011) Strain-sensing elastomer/carbon nanofiber “metacomposites”. J Phys Chem C 115:13215–13222CrossRefGoogle Scholar
  107. 107.
    Li L, Li J, Lukehart CM (2008) Graphitic carbon nanofiber-poly (acrylate) polymer brushes as gas sensors. Sens Actuators B Chem 130:783–788CrossRefGoogle Scholar
  108. 108.
    Jang J, Bae J (2007) Carbon nanofiber/polypyrrole nanocable as toxic gas sensor. Sens Actuators B Chem 122:7–13CrossRefGoogle Scholar
  109. 109.
    Harun FKC, Jumadi AM, Mahmood NH (2011) Carbon black polymer composite gas sensor for electronic nose. Int J Sci Eng Res 2(11):1–7Google Scholar
  110. 110.
    Ryan MA, Shevade AV, Zhou H, Homer ML (2004) Polymer–carbon black composite sensors in an electronic nose for air-quality monitoring. MRS Bull 29(10):714–719PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Wei C, Dai L, Roy A, Tolle TB (2006) Multifunctional chemical vapor sensors of aligned carbon nanotube and polymer composites. J Am Chem Soc 128(5):1412–1413CrossRefGoogle Scholar
  112. 112.
    Hernández-López S, Vigueras-Santiago E, Mora MM, Mancilla JRF, Contreras EAZ (2013) Cellulose-based polymer composite with carbon black for tetrahydrofuran sensing. Int J Polym ScI 2013:1–7CrossRefGoogle Scholar
  113. 113.
    Singha DK, Mahata P (2015) Luminescent coordination polymer–fullerene composite as a highly sensitive and selective optical detector for 2,4,6-trinitrophenol (TNP). RSC Adv 5:28092–28097CrossRefGoogle Scholar
  114. 114.
    Isoda T, Sato H et al (2011) Evalution of immunoglobulne sensing function using a fullerene- composite-polymer-coated sensor electrode. Sens Mater 23(4):237–249Google Scholar
  115. 115.
    Shih WP, Tsao LC, Lee CW, Cheng MY, Chang C, Yang YJ, Fan KC (2010) Flexible temperature sensor array based on a graphite-polydimethylsiloxane composite. Sens 10(4):3597–3610CrossRefGoogle Scholar
  116. 116.
    Seah TH, Pumera M (2011) Platelet graphite nanofibers/soft polymer composites for electrochemical sensing and biosensing. Sens Actuators B: Chemical 156(1):79–83CrossRefGoogle Scholar
  117. 117.
    Tadakaluru S, Thongsuwan W, Singjai P (2014) Stretchable and flexible high-strain sensors made using carbon nanotubes and graphite films on natural rubber. Sens 14:868–876CrossRefGoogle Scholar
  118. 118.
    Eswaraiah V, Balasubramaniam K, Ramaprabhu S (2012) One-pot synthesis of conducting graphene-polymer composites and their strain sensing application. Nanoscale 4(4):1258–1262PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Actuator. From Wikipedia.
  120. 120.
    Mohamadi S, Sanjani NS, Mahdavi H (2011) Functionalization of graphene sheets via chemically grafting of PMMA chains through in situ polymerization. J Macromol Sci Pt A 48(8):577–582CrossRefGoogle Scholar
  121. 121.
    Liang J, Huang L, Li N, Huang Y, Wu Y, Fang S, Oh J, Kozlov M, Ma Y, Li F, Baughman R, Chen Y (2012) Electromechanical actuator with controllable motion, fast response rate, and highfrequency resonance based on graphene and polydiacetylene. ACS Nano 6(5):4508–4519PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Ahir SV, Terentjev EM (2006) Fast relaxation of carbon nanotubes in polymer composite actuators. Phys Rev Lett 96(13):133902PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Chen L, Liu C, Liu K, Meng C, Hu C, Wang J, Fan S (2011) High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 5(3):1588–1593PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Wang XL, Oh IK (2010) Sulfonated poly(styrene-b-ethylene-co-butylene-b-styrene) and fullerene composites for ionic polymer actuators. J Nanosci Nanotechnol 10(5):3203–3206PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Jung JH, Vadahanambi S, Oh IK (2010) Electro-active nano-composite actuator based on fullerene-reinforced Nafion. Compos Sci Technol 70(4):584–592CrossRefGoogle Scholar
  126. 126.
    Ghaffari Zhou MY, Lin M, Koo CM, Zhang QM (2014) High electromechanical reponses of ultra-high-density aligned nano-porous microwave exfoliated graphite oxide/polymer nano-composites ionic actuators. Int J Smart Nano Mater 5(2):114–122CrossRefGoogle Scholar
  127. 127.
    Muralidharan MN, Ansari S (2013) Thermally reduced graphene oxide/thermoplastic polyurethane nanocomposites as photomechanical actuators. Adv Mat Lett 4(12):927–932CrossRefGoogle Scholar
  128. 128.
    Lian Y, Liu Y, Jiang T, Shu J, Lian H, Cao M (2010) Enhanced electromechanical performance of graphite oxide-nafion nanocomposite actuator. J Phys Chem 114(21):9659–9663Google Scholar
  129. 129.
    Sen I, Seki Y, Sarikanat M, Cetin L, Gurses BQ, Ozdemir O, Yilmaz OC, Sever K, Akar E, Mermer O (2015) Electroactive behavior of graphene nanoplatelets loaded cellulose composite actuators. Compos Part B Eng 69:369–377CrossRefGoogle Scholar
  130. 130.
    Yang W, Choi H, Choi S, Jeon M, Lee SY (2012) Carbon nanotube–graphene composite for ionic polymer actuators. Smart Mater Struct 21(5):055012CrossRefGoogle Scholar
  131. 131.
    Loomis J, King B, Burkhead T, Xu P, Bessler N, Terentjev E, Panchapakesan B (2012) Graphene-nanoplatelet-based photomechanical actuators. Nanotechnol 23(4):045501Google Scholar
  132. 132.
    Electrode. From Wikipedia.
  133. 133.
    Wang DW, Li F, Zhao J, Ren W, Chen ZG, Tan J et al (2009) Fabrication of graphene / polyaniline composite paper via in situ anodic electropolymerization for high-performance flexible electrode. ACS Nano 7:1745–1752CrossRefGoogle Scholar
  134. 134.
    Li H, Chen J, Han S, Niu W, Liu X, Xu G (2009) Electrochemiluminescence from tris(2,2-bipyridyl)ruthenium(II)-graphene-nafion modified electrode. Talanta 79:165–170PubMedCrossRefPubMedCentralGoogle Scholar
  135. 135.
    Kim JY, Kim M, Choi JH (2003) Characterization of light emitting devices based on a single-walled carbon nanotube–polymer composite. Synth Met 139(3):565–568CrossRefGoogle Scholar
  136. 136.
    Kauffmann JM, Linders CR, Patriarche GJ, Smyth MR (1988) A comparison of glassy-carbon and carbon-polymer composite electrodes incorporated into electrochemical detection systems for high-performance liquid chromatography. Talanta 35(3):179–182PubMedCrossRefPubMedCentralGoogle Scholar
  137. 137.
    Rakhi RB, Chen W, Alshareef HN (2012) Conducting polymer/carbon nanocoil composite electrodes for efficient supercapacitors. J Mater Chem 22:5177–5183CrossRefGoogle Scholar
  138. 138.
    Chang J, Najeeb CK, Lee JH, Kim JH (2011) Single-walled carbon nanotubes/polymer composite electrodes patterned directly from solution. Langmuir 27(11):7330–7336PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Calixto CMF, Mendes RK, Oliveira AC, Ramos LA, Cervini P, Cavalheiro ETG (2007) Development of graphite-polymer composites as electrode materials. Mater Res 10(2):1439–1516CrossRefGoogle Scholar
  140. 140.
    Perween M, Parmar DB, Bhadu GR, Srivastava DN (2014) Polymer–graphite composite: a versatile use and throw plastic chip electrode. Analyst 139:5919–5926PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Coffey B, Madsen PV, Poehler TO, Searson PC (1995) High charge density conducting polymer/graphite fiber composite electrodes for battery applications. J Electrochem Soc 142(2):321–325CrossRefGoogle Scholar
  142. 142.
    Gómez H, Ram MK, Alvi F, Villalba P, Stefanakos E, Kumar A (2011) Graphene-conducting polymer nanocomposite as novel electrode for supercapacitors. J Power Sources 196(8):4102–4108CrossRefGoogle Scholar
  143. 143.
    Lithium ion battery. From Wikipedia.
  144. 144.
  145. 145.
    Song Z, Xu T, Gordin ML, Jiang YB, Bae IT, Xiao Q, Zhan H, Liu J, Wang D (2012) Polymer—graphene nanocomposites as ultrafast-charge and discharge cathodes for rechargeable Lithium batteries. Nano Lett 12:22205–22211Google Scholar
  146. 146.
    Lee H, Yoo JK, Park JH, Kim JH, Kang K, Jung YS (2012) A stretchable polymer–carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation. Adv Energ Mater 2(8):976–982CrossRefGoogle Scholar
  147. 147.
    Fauteux D (1993) Carbon/polymer composite electrode for use in a lithium battery. EP0528557A1Google Scholar
  148. 148.
    Sivakkumar SR, Kim DW (2007) Polyaniline/carbon nanotube composite cathode for rechargeable lithium polymer batteries assembled with gel polymer electrolyte. J Electrochem Soc 154(2):A134–A139CrossRefGoogle Scholar
  149. 149.
    Veeraraghavan B, Paul J, Haran B, Popov B (2002) Study of polypyrrole graphite composite as anode material for secondary lithium-ion batteries. J Power Sour 109:377–387CrossRefGoogle Scholar
  150. 150.
    Li S, Shu K, Zhao C, Wang C, Guo Z, Wallace G, Liu HK (2014) One-step synthesis of graphene/polypyrrole nanofiber composites as cathode material for a biocompatible zinc/polymer battery. ACS Appl Mater Interfaces 6(19):16679–16686PubMedCrossRefPubMedCentralGoogle Scholar
  151. 151.
    Chen L, Zhang M, Wei W (2013) Graphene-based composites as cathode materials for lithium ion batteries. J Nanomat 2013: Article ID 940389, 8 pagesGoogle Scholar
  152. 152.
    Capacitor. From Wikipedia.
  153. 153.
    Zhang D, Zhang X, Chen Y, Yu P, Wang C, Ma Y (2011) Enhanced capacitance and rate capability of graphene/polypyrrole composite as electrode material for supercapacitors. J Power Sour 196:5990–5996CrossRefGoogle Scholar
  154. 154.
    Liao WC, Liao FS, Tsai CT, Yang YP (2012) Preparation of activated carbon for electric double layer capacitors. China Steel Tech Rep 25:36–41Google Scholar
  155. 155.
    Luo X, Chang DDL (2001) Carbon fiber/ polymer matrix composites as capacitor. Compos Sci Technol 61:885–888CrossRefGoogle Scholar
  156. 156.
    Li S, Zhao Y, Zhang Z, Tang H (2014) Preparation and characterization of epoxy/carbon fiber composite capacitors. Polym Compos. Scholar
  157. 157.
    Tien CP, Teng H (2010) Polymer/graphite oxide composites as high-performance materials for electric double layer capacitors. J Power Sour 195(8):2414–2418CrossRefGoogle Scholar
  158. 158.
    Huang L, Li C, Shi G (2014) High-performance and flexible electrochemical capacitors based on graphene/polymer composite films. J Mater Chem A 2:968–974CrossRefGoogle Scholar
  159. 159.
    Sangermano M (2014) Graphene-epoxy flexible transparent capacitor obtained by graphene-polymer transfer and uv–induced bonding.
  160. 160.
    Wu Q, Xu YX, Yao ZY, Liu AR, Shi GQ (2010) Supercapacitors based on flexible grapheme/ polyaniline nanofibre composite film. ACS Nano 4:1963–1970PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    Wang HL, Hao QL, Yang XJ, Lu LD, Wang X (2009) Graphene oxide doped polyaniline for super capacitors. Electrochem Commun 11:1158–1161CrossRefGoogle Scholar
  162. 162.
    Yan J, Wei T, Fan ZJ, Qian WZ, Zhang ML, Shen XD, Wei F (2010) Preparation of graphene nanosheets/ carbon nanotubes/ polyaniline composite as electrode material for supercapaitors. J Power Sour 195:3041–3045CrossRefGoogle Scholar
  163. 163.
    Lee KYT, Naguib H, Lian K (2014) Flexible multiwall carbon nano-tubes/conductive polymer composite electrode for supercapacitor applications. ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, Paper No. SMASIS2014-7735, pp. V001T01A033; 7 pages.
  164. 164.
    Zhamu A, Jang BZ (2013) Method of producing graphite-carbon composite electrodes for supercapacitors. US 8,497,225 B2Google Scholar
  165. 165.
    Singh A, Chandra A (2013) Graphite oxide/polypyrrole composite electrodes for achieving high energy density supercapacitors. J Appl Electrochem 43:773–782CrossRefGoogle Scholar
  166. 166.
    Liu Q, Nayfeh O, Nayfeh MH, Yau ST (2013) Flexible supercapacitor sheets based on hybrid nanocomposite materials. Nano Energ 2:133–137CrossRefGoogle Scholar
  167. 167.
    Electrostatic discharge. From Wikipedia.
  168. 168.
    Electromagnetic Shielding From Wikipedia.
  169. 169.
    Electromagnetic Interference. From Wikipedia.
  170. 170.
    Bhadra S, Singha NK, Khastgir D (2008) Semi-conductive composites from ethylene 1-octene copolymer and polyaniline coated nylon 6: studies on mechanical, thermal, processability, electrical and EMI shielding properties. Polym Eng Sci 48:995–1006CrossRefGoogle Scholar
  171. 171.
    Bhadra S, Singha NK, Khastgir D (2009) Dielectric properties and EMI shielding efficiency of polyaniline and ethylene 1-octene based semi-conducting composites. Curr Appl Phys 9:396–403CrossRefGoogle Scholar
  172. 172.
    Lee J, Yang SB, Jung HT (2009) Carbon nanotubes–polypropylene nanocomposites for electrostatic discharge applications. Macromol 42(21):8328–8334CrossRefGoogle Scholar
  173. 173.
    Kim S, Kim S, Lee C (2012) Electrostatic discharge polymer filler containing carbon nanotube enclosed with thermoplatic resin layer and manufacturing method thereof. US 20120298925 A1Google Scholar
  174. 174.
    Boday DJ, Gentrupa MH, Iben IET (2014) Low viscosity electrostatic discharge (ESD) dissipating adhesive substantially free of agglomerates. US 8673462 B2Google Scholar
  175. 175.
    Poosal A, Kittipong Hrimchum K, Aussawasathien D, Pentrakoon D, The Effect of oxygen-plasma treated graphene nanoplatelets upon the properties of multiwalled carbon nanotube and polycarbonate hybrid nanocomposites used for electrostatic dissipative applications. J Nanomater 2015: 1–9, Article ID 470297Google Scholar
  176. 176.
    Liang JJ, Wang Y, Huang Y, Ma YF, Liu ZF, Cai FM, Zhang CD, Gao HJ, Chen YS (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3):922–925CrossRefGoogle Scholar
  177. 177.
    Goyal RK, Kadam A (2010) Polyphenylene sulphide/graphite composites for EMI shielding applications. Adv Mat Lett 1(2):143–147CrossRefGoogle Scholar
  178. 178.
    Yang Y, Guptal MC, Dudley KL, Lawrence RW (2007) Electromagnetic interference shielding characteristics of carbon nanofiber-polymer composites. J Nanosci Nanotechnol 7(2):549–554PubMedCrossRefPubMedCentralGoogle Scholar
  179. 179.
    Wang S, Tambraparni M, Qiu J, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromol 42:5251–5255CrossRefGoogle Scholar
  180. 180.
    Yu J, Lu K, Sourty E, Grossiord N, Koning CE, Loos J (2007) Characterization of conductive multiwall carbon nanotube/polystyrene composites prepared by latex technology. Carbon 45:2897–2903CrossRefGoogle Scholar
  181. 181.
    Luo X, Chung DDL (1999) Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos: Part B 30:227–231CrossRefGoogle Scholar
  182. 182.
    Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Al-Saleh MH, Sundararaj U (2008) Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol Mater Eng 293(7):621–630CrossRefGoogle Scholar
  184. 184.
    Morari C, Balan I, Pintea J, Chitanu E, Iordache I (2011) Electrical conductivity and electromagnetic shielding effectiveness of silicone rubber filled with ferrite and graphite powders. Prog Electromagnet Res M 21:93–104CrossRefGoogle Scholar
  185. 185.
    Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Appl Mater Interface 5(11):4712–4724CrossRefGoogle Scholar
  186. 186.
    Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Functionalized graphene–PVDF foam composites for EMI shielding. Macromol Mater Eng 296(10):894–898CrossRefGoogle Scholar
  187. 187.
  188. 188.
    Mamo MA, Sustaita AO, Tetana ZN, Coville NJ, Hümmelgen IA (2013) Nitrogen-doped, boron-doped and undoped multiwalled carbon nanotube/polymer composites in WORM memory devices. Nanotechnol 24(12):125203CrossRefGoogle Scholar
  189. 189.
    Sustaita AO, Mamo MA, Segura-Cardenas E, Reyes-Reyes M, López-Sandova R, Coville NJ, Hümmelgen IA (2013) Functionalized spherical carbon nanostructure/poly(vinylphenol) composites for application in low power consumption write-once-read-many times memories. J Nanosci Nanotechnol 13:1–7CrossRefGoogle Scholar
  190. 190.
    Machado WS, Mamo MA, Coville NJ, Hümmelgen IA (2012) The OFF to ON switching time and ON state consolidation in write-once-read-many-times memory devices based on doped and undoped carbon-sphere/polymer composites. Thin Solid Films 520(13):4427–4431CrossRefGoogle Scholar
  191. 191.
    Pradhan B, Batabyal SK, Pal AJ (2006) Electrical bistability and memory phenomenon in carbon nanotube-conjugated polymer matrixes. J Phys Chem B 110(16):8274–8277PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Jo H, Ko J, Lim JA, Chang HJ, Kim YS (2013) Organic nonvolatile resistive switching memory based on molecularly entrapped fullerene derivative within a diblock copolymer nanostructure. Macromolecular Rapid Commun 34(4):355–361CrossRefGoogle Scholar
  193. 193.
    Khan MA, Bhansali US, Cha D, Alshareef HN (2013) All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends. Adv Funct Mater 23:2145–2152CrossRefGoogle Scholar
  194. 194.
    Kanwal A, Chhowalla M (2006) Stable, three layered organic memory devices from C60 molecules and insulating polymers. Appl Phys Lett 89:203103CrossRefGoogle Scholar
  195. 195.
    Son DI, Shim JH, Park DH, Jung JH, Lee JM, Park WI, Kim TW, Choi WK (2011) Polymer-ultrathin graphite sheet-polymer composite structured flexible nonvolatile bistable organic memory devices. Nanotechnol 22(29):295203CrossRefGoogle Scholar
  196. 196.
    Mamo MA, Sustaita AO, Coville NJ, Hümmelgen IA (2013) Polymer composite of poly(vinyl phenol)-reduced graphene oxide reduced by vitamin C in low energy consuming write-once–read-many times memory devices. Org Electron 14(1):175–181CrossRefGoogle Scholar
  197. 197.
    Kafy A, Sadasivuni KK, Kim HC, Akther A, Kim J (2015) Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. Phys Chem Chem Phys 17:5923–5931PubMedCrossRefPubMedCentralGoogle Scholar
  198. 198.
    Zhuang XD, Chen Y, Liu G, Li PP, Zhu CX, Kang ET, Noeh KG, Zhang B, Zhu JH, Li YX (2010) Conjugated-polymer-functionalized graphene oxide: synthesis and nonvolatile rewritable memory effect. Appl Mater 22(15):1731–1735Google Scholar
  199. 199.
    Fuel Cell. From Wikipedia.
  200. 200.
  201. 201.
    Dweiri R, Sahari J (2007) Electrical properties of carbon-based polypropylene composites for bipolar plates in polymer electrolyte membrane fuel cell (PEMFC). J Power Sour 171(2):424–432CrossRefGoogle Scholar
  202. 202.
    Xia LG, Li AJ, Wang WQ, Yin Q, Lin H, Zhao YB (2008) Effects of resin content and preparing conditions on the properties of polyphenylene sulfide resin/graphite composite for bipolar plate. J Power Sour 178(1):363–367CrossRefGoogle Scholar
  203. 203.
    Cunningham BD, Baird DG (2007) Development of bipolar plates for fuel cells from graphite filled wet-lay material and a compatible thermoplastic laminate skin layer. J Power Sour 168(2):418–425CrossRefGoogle Scholar
  204. 204.
    Kakati BK, Deka D (2007) Differences in physico-mechanical behaviors of resol (e) and novolac type phenolic resin based composite bipolar plate for proton exchange membrane (PEM) fuel cell. Electrochim Acta 52:7330–7336CrossRefGoogle Scholar
  205. 205.
    Lee JH, Jang YK, Hong CE, Kim NH, Li P, Lee HK (2009) Effect of carbon fillers on properties of polymer composite bipolar plates of fuel cells. J Power Sour 193(2):523–529CrossRefGoogle Scholar
  206. 206.
    Liao SH, Yen CY, Weng CC, Lin YF, Ma CCM, Yang CH, Tsai MC, Yen MY, Hsiao MC, Lee SH, Xie XF, Hsiao YH (2008) Preparation and properties of carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. J Power Sour 185(2):1225–1232CrossRefGoogle Scholar
  207. 207.
    Mathur RB, Dhakate SR, Gupta DK, Dhami TL, Aggarwal RK (2008) Effect of different carbon fillers on the properties of graphite composite bipolar plate. J Mater Process Technol 203(1–3):184–192CrossRefGoogle Scholar
  208. 208.
    Song LN, Xiao M, Meng YZ (2006) Electrically conductive nanocomposites of aromatic polydisulfide/expanded graphite. Compos Sci Technol 66(13):2156–2162CrossRefGoogle Scholar
  209. 209.
    Du C, Ming P, Hou M, Fu J, Shen Q, Liang D, Fu Y, Luo X, Shao Z, Yi B (2010) Preparation and properties of thin epoxy/compressed expanded graphite composite bipolar plates for proton exchange membrane fuel cells. J Power Sour 195(3):794–800CrossRefGoogle Scholar
  210. 210.
    Allaoui A, Bai S, Cheng HM, Bai JB (2002) Mechanical and electrical properties of a MWNT/epoxy composite. Compos Sci Technol 62(15):1993–1998CrossRefGoogle Scholar
  211. 211.
    Celzard A, McRae E, Deleuze C, Dufort M, Furdin G, Mareche JF (1996) Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys Rev B 53:6209–6214CrossRefGoogle Scholar
  212. 212.
    Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899CrossRefGoogle Scholar
  213. 213.
    Martin CA, Sandler JKW, Shaffer MSP, Schwarz MK, Bauhofer W, Schulte K, Windle AH (2004) Formation of percolating networks in multi-wall carbon-nanotube–epoxy composites. Compos Sci Technol 64(15):2309–2316CrossRefGoogle Scholar
  214. 214.
    Munson-McGee SH (1991) Estimation of the critical concentration in an anisotropic percolation network. Phys Rev B 43:3331–3336CrossRefGoogle Scholar
  215. 215.
    Gojny FH, Wichmann MHG, Fiedler B, Kinloch IA, Bauhofer W, Windle AH, Schulte K (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045CrossRefGoogle Scholar
  216. 216.
    Shaffer MSP, Fan X, Windle AH (1998) Dispersion and packing of carbon nanotubes. Carbon 36(11):1603–1612CrossRefGoogle Scholar
  217. 217.
    Sun J, Gao L (2001) Development of a dispersion process for carbon nanotubes in ceramic matrix by heterocoagulation. Carbon 41(5):1063–1068CrossRefGoogle Scholar
  218. 218.
    Liu Y, Gao L (2005) A study of the electrical properties of carbon nanotube-NiFe2O4 composites: effect of the surface treatment of the carbon nanotubes. Carbon 43(1):47–52CrossRefGoogle Scholar
  219. 219.
    Zhu BK, Xie SH, Xu ZK, Xu YY (2006) Preparation and properties of the polyimide/multi-walled carbon nanotubes (MWNTs) nanocomposites. Compos Sci Technol 66(3–4):548–554CrossRefGoogle Scholar
  220. 220.
    Lee SH, Cho E, Jeon SH, Youn JR (2007) Rheological and electrical properties of polypropylene composites containing functionalized multi-walled carbon nanotubes and compatibilizers. Carbon 45(14):2810–2822CrossRefGoogle Scholar
  221. 221.
    Cele NP, Ray SS (2009) Recent progress on nafion-based nanocomposite membranes for fuel cell applications. Macromol Mater Eng 294(11):719–738CrossRefGoogle Scholar
  222. 222.
    Liu YH, Yi B, Shao ZG, Xing D, Zhang H (2006) Carbon nanotubes reinforced nafion composite membrane for fuel cell applications. Electrochem Solid-State Lett 9(7):A356–A359CrossRefGoogle Scholar
  223. 223.
    Liu YH, Yi B, Shao ZG, Wang L, Xing D, Zhang H (2007) Pt/CNTs-Nafion reinforced and self-humidifying composite membrane for PEMFC applications. J Power Sour 163(2):807–813CrossRefGoogle Scholar
  224. 224.
    Thomassin JM, Kollar J, Caldarella G, Germain A, Jerome R, Detrembleur C (2007) Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications. J Membrane Sci 303(1–2):252–257CrossRefGoogle Scholar
  225. 225.
    Wang L, Xing DM, Zhang HM, Yu HM, Liu YH, Yi BL (2008) MWCNTs reinforced Nafion® membrane prepared by a novel solution-cast method for PEMFC. J Power Sour 176(1):270–275CrossRefGoogle Scholar
  226. 226.
    Zhang W, Dehghani-Sanij AA, Blackburn RS (2007) Carbon based conductive polymer composite. J Mater Sci 42(10):3408–3418CrossRefGoogle Scholar
  227. 227.
    Chen WF, Wu JS, Kuo PL (2008) Poly(oxyalkylene)diamine-functionalized carbon nanotube/perfluorosulfonated polymer composites: synthesis, water state, and conductivity. Chem Mater 20(18):5756–5757CrossRefGoogle Scholar
  228. 228.
    Asgari MS, Nikazar M, Molla-abbasi P, Hasani-Sadrabadi MM (2013) Nafion®/histidine functionalized carbon nanotube: high-performance fuel cell membranes. Int J Hydrogen Energy 38(14):5894–5902CrossRefGoogle Scholar
  229. 229.
    Kannan R, Kakade BA, Pillai VK (2008) Polymer electrolyte fuel cells using Nafion-based composite membranes with functionalied carbon nanotubes. Angew Chem Int Ed 47(14):2653–2656CrossRefGoogle Scholar
  230. 230.
    Kannan R, Aher PP, Palaniselvam T, Kurungot S, Kharul UK, Pillai VK (2010) Artificially designed membranes using phosphonated multiwall carbon nanotube–polybenzimidazole composites for polymer electrolyte fuel cells. J Phys Chem Lett 1(14):2109–2113CrossRefGoogle Scholar
  231. 231.
    Cele NP, Ray SS, Pillai SK, Ndwandwe Nonjola MS, Sikhwivhilu L (2009) Carbon nanotubes based nafion composite membranes for fuel cell applications. Fuel Cells 10(1):64–71Google Scholar
  232. 232.
    Tasaki K, DeSousa R, Wang H, Gasa J, Venkatesan A, Pugazhendhi P, Loutfy RO (2006) Fullerene composite proton conducting membranes for polymer electrolyte fuel cells operating under low humidity conditions. J Membrane Sci 281(1–2):570–580CrossRefGoogle Scholar
  233. 233.
    DeSousa R, Venkatesan A, Tasaki K, Wang H, Gasa J (2006) Fullerenes and their composites for proton conducting membranes in polymer electrolyte fuel cells. ECS Trans 1(6):175–181CrossRefGoogle Scholar
  234. 234.
    Kumar R, Xu C, Scott K (2012) Graphite oxide/Nafion composite membranes for polymer electrolyte fuelcells. RSC Adv 2:8777–8782CrossRefGoogle Scholar
  235. 235.
    Xu C, Cao Y, Kumar R, Wu X, Wang X, Scott K (2011) A polybenzimidazole/sulfonated graphite oxide composite membrane for high temperature polymer electrolyte membrane fuel cells. J Mater Chem 21:11359–11364CrossRefGoogle Scholar
  236. 236.
    Lee DC, Yang HN, Park SH, Kim WJ (2014) Nafion/graphene oxide composite membranes for low humidifying polymer electrolyte membrane fuel cell. J Membrane Sci 452(15):20–28CrossRefGoogle Scholar
  237. 237.
    Zarrin H, Higgins D, Jun Y, Chen Z, Fowler M (2011) Functionalized graphene oxide nanocomposite membrane for low humidity and high temperature proton exchange membrane fuel cells. J Phys Chem C 115(42):20774–20781CrossRefGoogle Scholar
  238. 238.
    Field effect transistor. From wikipedia.
  239. 239.
    Field Effect Transistors (FET). http://www9.dw– Scholar
  240. 240.
    Schie SP, Fröhlich N, Held M, Gannott F, Schweiger M, Forster M, Scherf U, Zaumseil J (2015) Polymer-sorted semiconducting carbon nanotube networks for high-performance ambipolar field-effect transistors. ACS Appl Mater Interfaces 7(1):682–689CrossRefGoogle Scholar
  241. 241.
    Chua CL, Yeoh KH, Woon KL (2014) Hybrid carbon nanotube/polymer heterointerface organic field effect transistor. Thin Solid Films 556(1):495–498CrossRefGoogle Scholar
  242. 242.
    Derenskyi V, Gomulya W, Rios JMS, Fritsch M, Fröhlich N, Jung S, Allard S, Bisri SZ, Gordiichuk P, Herrmann A, Scherf U, Loi MA (2014) Carbon nanotube network ambipolar field-effect transistors with 108 on/off ratio. Adv Mater 26:5969–5975PubMedCrossRefPubMedCentralGoogle Scholar
  243. 243.
    Yasin M, Tauqeer T, Rahman HU, Karimov KS, San SE, Tunc AV (2015) Polymer-fullerene bulk heterojunction-based strain-sensitive flexible organic field-effect transistor. Arabian J Sci Eng 40(1):257–262CrossRefGoogle Scholar
  244. 244.
    Marjanović N, Singh TB, Dennler G, Günes S, Neugebauer H, Sariciftci NS, Schwödiauer R, Bauer S (2006) Photoresponse of organic field-effect transistors based on conjugated polymer/fullerene blends. Org Electron 7(4):188–194CrossRefGoogle Scholar
  245. 245.
    Gemayel ME, Haar S, Liscio F, Schlierf A, Melinte G, Milita S, Ersen O, Ciesielski A, Palermo V, Samorì P (2014) Leveraging the ambipolar transport in polymeric field-effect transistors via blending with liquid-phase exfoliated graphene. Adv Mater 26:4814–4819PubMedCrossRefPubMedCentralGoogle Scholar
  246. 246.
    Huang J, Hines DR, Jung BJ, Bronsgeest MS, Tunnell A, Ballarotto V, Katz HE, Fuhrer MS, Williams ED, Cumings J (2011) Polymeric semiconductor/graphene hybrid field-effect transistors. Org Electron 12:1471–1476CrossRefGoogle Scholar
  247. 247.
    Inagaki M, Yang Y, Kang F (2012) Carbon nano fibres prepared via electrospinning. Adv Mat 24(19):2547–2566CrossRefGoogle Scholar
  248. 248.
  249. 249.
    Conductive carbon black. Turning electrically conductive plastics into products.
  250. 250.
    Prabhu L (2014) More effective cooling with PLANSEE’s heat spreaders.

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sambhu Bhadra
    • 1
  • Mostafizur Rahaman
    • 2
    Email author
  • P. Noorunnisa Khanam
    • 3
  1. 1.Steer Engineering Private LimitedBengaluruIndia
  2. 2.Department of ChemistryCollege of Science, King Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Mechanical and Industrial EngineeringQatar UniversityDohaQatar

Personalised recommendations