Thermal Conductivity of Polymer–Carbon Composites

  • Soumya MondalEmail author
  • Dipak Khastgir
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


Thermally conductive polymer–carbon composites whirled the motion and created a new era in polymer composites field by replacing the metal parts and inorganic filler-polymer composites in several application areas like heat exchanger, electric motors, power exchanger and generators. The advantages that create the possibilities of polymer–carbon composites over others lie in the several advantages such as lightweight, non-corrosive and most importantly ease of processing. Carbonaceous fillers generally have very high thermal conductivity, but their polymer composites suffer from achieving such high level of thermal conductivity though it attains the requirement in field application or even more in some particular filler-polymer combinations. The challenge mainly comes from the high interfacial resistance between filler and polymer matrix which alter the phonon transfer path, resulting in low thermal conductivity of polymer composites. This chapter reviews the thermal conductivity of various polymer–carbon filler composites with special references to the role of crystallinity developed in polymer due to the presence of filler, size and shape of filler, surface modification to improves interfacial adhesion and their dispersion ability in the polymer matrix in controlling the thermal conductivity of composites.


Polymer Composites Thermal Conductivity Filler 


  1. 1.
    Shindé SL, Goela J (2006) High thermal conductivity materials. SpringerGoogle Scholar
  2. 2.
    Tanaka T, Kozako M, Okamoto K (2012) Toward high thermal conductivity nano micro epoxy composites with sufficient endurance voltage. J Int Couns Electr Eng 2(1):90–98CrossRefGoogle Scholar
  3. 3.
    Jordan J, Jacob KI, Tannenbaum R, Sharaf MA, Jasiuk I (2005) Experimental trends in polymer nanocomposites—a review. Mater Sci Eng, A 393(1):1–11CrossRefGoogle Scholar
  4. 4.
    Raman C, Meneghetti P (2008) Boron nitride finds new applications in thermoplastic compounds. Plast Additvs Comp 10(3):26–31CrossRefGoogle Scholar
  5. 5.
    Ishida H, Rimdusit S (1998) Very high thermal conductivity obtained by boron nitride-filled polybenzoxazine. Thermochim Acta 320(1):177–186CrossRefGoogle Scholar
  6. 6.
    Han Z, Fina A (2011) Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review. Prog Polym Sci 36(7):914–944CrossRefGoogle Scholar
  7. 7.
    Chen Y-M, Ting J-M (2002) Ultra high thermal conductivity polymer composites. Carbon 40(3):359–362CrossRefGoogle Scholar
  8. 8.
    Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang J-Y, Ma C-CM et al (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3):793–803CrossRefGoogle Scholar
  9. 9.
    Yu A, Itkis ME, Bekyarova E, Haddon RC (2006) Effect of single-walled carbon nanotube purity on the thermal conductivity of carbon nanotube-based composites. Appl Phys Lett 89(13):133102CrossRefGoogle Scholar
  10. 10.
    Hammerschmidt U (2002) Guarded hot-plate (GHP) method: uncertainty assessment. Int J Thermphys 23(6):1551–1570CrossRefGoogle Scholar
  11. 11.
    Kwon SY, Kim Y-G, Lee S, Kim JC (2011) Evaluation system for figure of merit of thermoelectric devices. Jpn J Appl Phys 50(11S):11RE02CrossRefGoogle Scholar
  12. 12.
    Chung D (1995) Materials for electronic packaging. Butterworth-HeinemannGoogle Scholar
  13. 13.
    Jakubinek MB (2013) Thermal conductivity of nanotube assemblies and superfiber materials. Elsevier Inc. Nanotube Superfiber Materials: Chapter 16CrossRefGoogle Scholar
  14. 14.
    Araki T, Shibayama M, Tran-Cong Q (1998) Structure and properties of multiphase polymeric materials. CRC PressGoogle Scholar
  15. 15.
    Agari Y, Ueda A, Omura Y, Nagai S (1997) Thermal diffusivity and conductivity of PMMA/PC blends. Polymer 38(4):801–807CrossRefGoogle Scholar
  16. 16.
    Rohsenow WM, Hartnett JP, Cho YI (1998) Handbook of heat transfer. McGraw-Hill, New YorkGoogle Scholar
  17. 17.
    Godovsky YK (2012) Thermophysical properties of polymers. Springer Science & Business MediaGoogle Scholar
  18. 18.
    T’Joen C, Park Y, Wang Q, Sommers A, Han X, Jacobi A (2009) A review on polymer heat exchangers for HVAC&R applications. Int J Refrig 32(5):763–779CrossRefGoogle Scholar
  19. 19.
    Hu M, Yu D, Wei J (2007) Thermal conductivity determination of small polymer samples by differential scanning calorimetry. Polym Test 26(3):333–337CrossRefGoogle Scholar
  20. 20.
    Wang C-F, Huang P-K, Hung P-R, Hsu C-C, Jian S-R, Yang P-F et al (2015) Synthesis and characterization of polydopamine modified carbon nanotube (CNT)/polydimethylsiloxane (PDMS) composites. In: 2015 International Conference on: IEEE, Electronics Packaging and iMAPS All Asia Conference (ICEP-IACC), pp 826–829Google Scholar
  21. 21.
    Price DM, Jarratt M (2002) Thermal conductivity of PTFE and PTFE composites. Thermochim Acta 392:231–236CrossRefGoogle Scholar
  22. 22.
    Kline DE (1961) Thermal conductivity studies of polymers. J Polym Sci 50(154):441–450CrossRefGoogle Scholar
  23. 23.
    Cherkasova L (1959) Effect of structure on the thermal conductivity of polymers. Zh Fiz Khim 33(9):1928–1932Google Scholar
  24. 24.
    Reese W (1969) Thermal properties of polymers at low temperatures. J Macromol Sci Chem 3(7):1257–1295CrossRefGoogle Scholar
  25. 25.
    Zhong C, Yang Q, Wang W (2001) Corrigendum to “Correlation and prediction of thermal conductivity of amorphous polymers” [Fluid Phase Equilibria 181 (2001) 195–202]. Fluid Phase Equilib 192(1):209CrossRefGoogle Scholar
  26. 26.
    Mathur V, Sharma K (2016) Thermal response of polystyrene/poly methyl methacrylate (PS/PMMA) polymeric blends. Heat and Mass Transfer 1–11Google Scholar
  27. 27.
    King JA, Tucker KW, Vogt BD, Weber EH, Quan C (1999) Electrically and thermally conductive nylon 6, 6. Polym Compos 20(5):643–654CrossRefGoogle Scholar
  28. 28.
    Yu A, Ramesh P, Itkis ME, Bekyarova E, Haddon RC (2007) Graphite nanoplatelet-epoxy composite thermal interface materials. J Phys Chem C 111(21):7565–7569CrossRefGoogle Scholar
  29. 29.
    Kalaitzidou K, Fukushima H, Drzal LT (2007) Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 5(7):1446–1452CrossRefGoogle Scholar
  30. 30.
    Verdejo R, Bernal MM, Romasanta LJ, Lopez-Manchado MA (2011) Graphene filled polymer nanocomposites. J Mat Chem 21(10):3301–3310CrossRefGoogle Scholar
  31. 31.
    Pierson HO (1993) Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications (materials science and process technology). William Andrew Inc., Norwich, NYGoogle Scholar
  32. 32.
    Tu H, Ye L (2009) Thermal conductive PS/graphite composites. Polym Advan Technol 20(1):21–27CrossRefGoogle Scholar
  33. 33.
    Yu A, Ramesh P, Sun X, Bekyarova E, Itkis ME, Haddon RC (2008) Enhanced thermal conductivity in a hybrid graphite nanoplatelet–carbon nanotube filler for epoxy composites. Advan Mater 20(24):4740–4744CrossRefGoogle Scholar
  34. 34.
    Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7):1709–1718CrossRefGoogle Scholar
  35. 35.
    Kuriger RJ, Alam MK, Anderson DP, Jacobsen RL (2002) Processing and characterization of aligned vapor grown carbon fiber reinforced polypropylene. Compos Part A: Appl Sci 33(1):53–62CrossRefGoogle Scholar
  36. 36.
    Abdel-Aal N, El-Tantawy F, Al-Hajry A, Bououdina M (2008) Epoxy resin/plasticized carbon black composites. Part I. Electrical and thermal properties and their applications. Polym Compos 29(5):511–517CrossRefGoogle Scholar
  37. 37.
    Biercuk M, Llaguno MC, Radosavljevic M, Hyun J, Johnson AT, Fischer JE (2002) Carbon nanotube composites for thermal management. Appl Phys Lett 80(15):2767–2769CrossRefGoogle Scholar
  38. 38.
    Choi E, Brooks J, Eaton D, Al-Haik M, Hussaini M, Garmestani H et al (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94(9):6034–6039CrossRefGoogle Scholar
  39. 39.
    Fukushima H, Drzal L, Rook B, Rich M (2006) Thermal conductivity of exfoliated graphite nanocomposites. J Therm Anal Calorim 85(1):235–238CrossRefGoogle Scholar
  40. 40.
    Fang M, Wang K, Lu H, Yang Y, Nutt S (2010) Single-layer graphene nanosheets with controlled grafting of polymer chains. J Mater Chem 20(10):1982–1992CrossRefGoogle Scholar
  41. 41.
    Yu C, Shi L, Yao Z, Li D, Majumdar A (2005) Thermal conductance and thermopower of an individual single-wall carbon nanotube. Nano Lett 5(9):1842–1846CrossRefGoogle Scholar
  42. 42.
    Chang C-W, Okawa D, Garcia H, Majumdar A, Zettl A (2008) Breakdown of Fourier’s law in nanotube thermal conductors. Phys Rev Lett 101(7):075903CrossRefGoogle Scholar
  43. 43.
    Donadio D, Galli G (2007) Thermal conductivity of isolated and interacting carbon nanotubes: comparing results from molecular dynamics and the Boltzmann transport equation. Phys Rev Lett 99(25):255502CrossRefGoogle Scholar
  44. 44.
    Cao J, Yan X, Xiao Y, Ding J (2004) Thermal conductivity of zigzag single-walled carbon nanotubes: role of the umklapp process. Phys Rev B 69(7):073407CrossRefGoogle Scholar
  45. 45.
    Fujii M, Zhang X, Xie H, Ago H, Takahashi K, Ikuta T et al (2005) Measuring the thermal conductivity of a single carbon nanotube. Phys Rev Lett 95(6):065502CrossRefGoogle Scholar
  46. 46.
    Alaghemandi M, Algaer E, Böhm MC, Müller-Plathe F (2009) The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations. Nanotechnology 20(11):115704CrossRefGoogle Scholar
  47. 47.
    Maruyama S (2002) A molecular dynamics simulation of heat conduction in finite length SWNTs. Phys Rev B 323(1):193–195Google Scholar
  48. 48.
    Gharagozloo-Hubmann K, Boden A, Czempiel GJ, Firkowska I, Reich S (2013) Filler geometry and interface resistance of carbon nanofibres: key parameters in thermally conductive polymer composites. Appl Phys Lett 102(21):213103CrossRefGoogle Scholar
  49. 49.
    Sahoo NG, Rana S, Cho JW, Li L, Chan SH (2010) Polymer nanocomposites based on functionalized carbon nanotubes. Prog Polym Sci 35(7):837–867CrossRefGoogle Scholar
  50. 50.
    Teng C-C, Ma C-CM, Lu C-H, Yang S-Y, Lee S-H, Hsiao M-C et al (2011) Thermal conductivity and structure of non-covalent functionalized graphene/epoxy composites. Carbon 49(15):5107–5116CrossRefGoogle Scholar
  51. 51.
    Song SH, Park KH, Kim BH, Choi YW, Jun GH, Lee DJ et al (2013) Enhanced thermal conductivity of epoxy-graphene composites by using non-oxidized graphene flakes with non-covalent functionalization. Advan Mater 25(5):732–737CrossRefGoogle Scholar
  52. 52.
    Ganguli S, Roy AK, Anderson DP (2008) Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites. Carbon 46(5):806–817CrossRefGoogle Scholar
  53. 53.
    Gulotty R, Castellino M, Jagdale P, Tagliaferro A, Balandin AA (2013) Effects of functionalization on thermal properties of single-wall and multi-wall carbon nanotube–polymer nanocomposites. ACS Nano 7(6):5114–5121CrossRefGoogle Scholar
  54. 54.
    Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos Part A: Appl Sci 41(10):1345–1367CrossRefGoogle Scholar
  55. 55.
    Gojny FH, Wichmann MH, Fiedler B, Kinloch IA, Bauhofer W, Windle AH et al (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045CrossRefGoogle Scholar
  56. 56.
    Kochetov R (2012) Thermal and electrical properties of nanocomposites, including material properties: TU Delft, Delft University of TechnologyGoogle Scholar
  57. 57.
    Agari Y, Uno T (1986) Estimation on thermal conductivities of filled polymers. J Appl Polym Sci 32(7):5705–5712CrossRefGoogle Scholar
  58. 58.
    Chai YH, Yusup S, Chok VS, Arpin MT, Irawan S (2016) Investigation of thermal conductivity of multi walled carbon nanotube dispersed in hydrogenated oil based drilling fluids. Appl Therm Eng 107:1019–1025CrossRefGoogle Scholar
  59. 59.
    Bruggeman VD (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 416(7):636–664CrossRefGoogle Scholar
  60. 60.
    Cheng S, Vachon R (1969) The prediction of the thermal conductivity of two and three phase solid heterogeneous mixtures. Int J Heat Mass Tran 12(3):249–264CrossRefGoogle Scholar
  61. 61.
    Nielsen LE (1974) The thermal and electrical conductivity of two-phase systems. Ind Eng Chem Fund 13(1):17–20CrossRefGoogle Scholar
  62. 62.
    Ashton J, Halpin J, Petit P (1969) Primer on composite analysis. Technomic, Stamford, CNGoogle Scholar
  63. 63.
    Agari Y, Uno T (1985) Thermal conductivity of polymer filled with carbon materials: effect of conductive particle chains on thermal conductivity. J Appl Polym Sci 30(5):2225–2235CrossRefGoogle Scholar
  64. 64.
    Choy C, Kwok K, Leung W, Lau FP (1994) Thermal conductivity of poly (ether ether ketone) and its short-fiber composites. J Polym Sci Polym Phys 32(8):1389–1397CrossRefGoogle Scholar
  65. 65.
    Progelhof R, Throne J, Ruetsch R (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16(9):615–625CrossRefGoogle Scholar
  66. 66.
    Fu S-Y, Yue C-Y, Hu X, Mai Y-W (2001) Characterization of fiber length distribution of short-fiber reinforced thermoplastics. J Mater Sci Lett 20(1):31–33CrossRefGoogle Scholar
  67. 67.
    Deng F, Zheng Q-S, Wang L-F, Nan C-W (2007) Effects of anisotropy, aspect ratio, and nonstraightness of carbon nanotubes on thermal conductivity of carbon nanotube composites. Appl Phys Lett 90(2):021914CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Rubber Technology Centre, Indian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations