Electromagnetic Interference (EMI) Shielding Effectiveness (SE) of Polymer-Carbon Composites

  • Ranvijai Ram
  • Mostafizur RahamanEmail author
  • Dipak KhastgirEmail author
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


In this chapter, the electromagnetic interference shielding effectiveness (EMISE) of carbon based polymer composites is discussed in details. The basic principle of EMI, EMI shielding, and its theory are mentioned herein. The basic requirement of EMI SE of a material is its electrical conductivity. It has been mentioned that electrical conductivity of 0.5 S/cm is required to produce at least 30 dB attenuation. As non-conducting materials exhibit negligible EMI SE, hence EMI SE of polymer-carbon composites based on only conducting carbons like carbon black, carbon fiber, carbon nanotubes, and graphene are reported within this chapter. EMI SE depends on many factors like nature of filler, filler concentration, nature of polymer, filler geometry, polymer blending, sample thickness, frequency of radiation, etc. These governing factors of EMI SE are discussed is details at the end of this chapter.


Polymer Composites Carbons Electrical conductivity EMI SE Dependent phenomena 



Authors are thankful to Rubber Technology Centre, Indian Institute of Technology Kharagpur and Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia, for financial support to write this book chapter.


  1. 1.
    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) Novel carbon nanotube–polystyrene foam composites for electromagnetic interference shielding. Nano Lett 5(11):2131–2134PubMedCrossRefGoogle Scholar
  2. 2.
    Geetha S, Satheesh KKK, Rao CR, Vijayan M, Trivedi DC (2009) EMI shielding: methods and materials—a review. J Appl Polym Sci 112(4):2073–2086CrossRefGoogle Scholar
  3. 3.
    Mottahed BD, Manoochehri S (1995) A review of research in materials, modeling and simulation, design factors, testing, and measurements related to electromagnetic interference shielding. Polym Plast Technol Eng 34(2):271–346CrossRefGoogle Scholar
  4. 4.
    Maiti S, Shrivastava NK, Suin S, Khatua B (2013) Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate–MWCNT–graphite nanoplate networking. ACS Appl Mater Inter 5(11):4712–4724CrossRefGoogle Scholar
  5. 5.
    Mazurkiewicz PH, Hewlett-Packard Development Company LP (2005) Board-level conformal EMI shield having an electrically-conductive polymer coating over a thermally-conductive dielectric coating. US Patent 6,849,800Google Scholar
  6. 6.
    Chung D (2001) Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2):279–285CrossRefGoogle Scholar
  7. 7.
    Huang JC (1995) EMI shielding plastics: a review. Adv Polym Technol 14(2):137–150CrossRefGoogle Scholar
  8. 8.
    Gamble J, Yats LD (1995) The Dow Chemical Company. EMI shielding composites. US Patent 5,399,295Google Scholar
  9. 9.
    Luch D (2004) Electromagnetic interference shields and methods of manufacture. US Patent 6,697,248Google Scholar
  10. 10.
    Bigg D (1984) The effect of compounding on the conductive properties of EMI shielding compounds. Adv Polym Tech 4(3–4):255–256CrossRefGoogle Scholar
  11. 11.
    Pukánszk B, Maurer FH (1995) Composition dependence of the fracture toughness of heterogeneous polymer systems. Polymer 36(8):1617–1625CrossRefGoogle Scholar
  12. 12.
    Thomassin J-M, Jérôme C, Pardoen T, Bailly C, Huynen I, Detrembleur C (2013) Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater Sci Eng, R 74(7):211–232CrossRefGoogle Scholar
  13. 13.
    Prasad V (2012) Low temperature charge transport and microwave absorption of carbon coated iron nanoparticles–polymer composite films. Mater Res Bull 47(6):1529–1532CrossRefGoogle Scholar
  14. 14.
    Chen SC, Chien RD, Lee PH, Huang JS (2005) Effects of molding conditions on the electromagnetic interference performance of conductive ABS parts. J Appl Polym Sci 98(3):1072–1080CrossRefGoogle Scholar
  15. 15.
    Huynen I, Quiévy N, Bailly C, Bollen P, Detrembleur C, Eggermont S, Molenberg I, Thomassin JM, Urbanczyk L, Pardoen T (2011) Multifunctional hybrids for electromagnetic absorption. Acta Mater 59(8):3255–3266CrossRefGoogle Scholar
  16. 16.
    Saini P, Choudhary V, Singh B, Mathur R, Dhawan S (2011) Enhanced microwave absorption behavior of polyaniline-CNT/polystyrene blend in 12.4–18.0 GHz range. Synth Met 161(15):1522–1526CrossRefGoogle Scholar
  17. 17.
    Saini P, Choudhary V (2013) Structural details, electrical properties, and electromagnetic interference shielding response of processable copolymers of aniline. J Mater Sci 48(2):797–804CrossRefGoogle Scholar
  18. 18.
    Markham D (1999) Shielding: quantifying the shielding requirements for portable electronic design and providing new solutions by using a combination of materials and design. Mater Des 21(1):45–50CrossRefGoogle Scholar
  19. 19.
    Bagwell RM, McManaman JM, Wetherhold RC (2006) Short shaped copper fibers in an epoxy matrix: their role in a multifunctional composite. Compos Sci Technol 66(3):522–530CrossRefGoogle Scholar
  20. 20.
    Biswas KK, Somiya S (2001) Effect of isothermal physical aging on creep behavior of stainless-fiber/PPE composites. J Phys Soc Jpn 50(9Appendix):172–177Google Scholar
  21. 21.
    Chen JH, Hsu KC, Hsieh MY (2016) Effects of preparation parameters of a one-pot approach on the conductivity, structure, and chemical composition of silver/reduced-graphene oxide composite. Ind Eng Chem Res 55(16):4390–4402CrossRefGoogle Scholar
  22. 22.
    Huang CJ, Chang TC (2004) Studies on the electromagnetic interference shielding effectiveness of metallized PVAc-AgNO3/PET conductive films. J Appl Polym Sci 91(1):270–273CrossRefGoogle Scholar
  23. 23.
    Yang Y, Gupta M, Dudley K (2007) Studies on electromagnetic interference shielding characteristics of metal nanoparticle-and carbon nanostructure-filled polymer composites in the Ku-band frequency. Micro Nano Lett 2(4):85–89CrossRefGoogle Scholar
  24. 24.
    Kim M, Kim H, Byun S, Jeong S, Hong Y, Joo J, Song KT, Kim JK, Lee CJ, Lee JY (2002) PET fabric/polypyrrole composite with high electrical conductivity for EMI shielding. Synth Met 126(2):233–239CrossRefGoogle Scholar
  25. 25.
    Bhadra S, Singha NK, Khastgir D (2008) Semiconductive composites from ethylene 1-octene copolymer and polyaniline coated nylon 6: studies on mechanical, thermal, processability, electrical, and EMI shielding properties. Polym Eng Sci 48(5):995–1006CrossRefGoogle Scholar
  26. 26.
    Phang SW, Tadokoro M, Watanabe J, Kuramoto N (2009) Effect of Fe3O4 and TiO2 addition on the microwave absorption property of polyaniline micro/nanocomposites. Polym Adv Technol 20(6):550–557CrossRefGoogle Scholar
  27. 27.
    Geetha S, Kumar KKS, Trivedi DC (2005) Conducting fabric-reinforced polyaniline film using p-chlorophenol as secondary dopant for the control of electromagnetic radiations. J Compos Mater 39(7):647–658CrossRefGoogle Scholar
  28. 28.
    Lakshmi K, John H, Mathew K, Joseph R, George K (2009) Microwave absorption, reflection and EMI shielding of PU–PANI composite. Acta Mater 57(2):371–375CrossRefGoogle Scholar
  29. 29.
    Niu Y (2006) Preparation of polyaniline/polyacrylate composites and their application for electromagnetic interference shielding. Polym Compos 27(6):627–632CrossRefGoogle Scholar
  30. 30.
    Vulpe S, Nastase F, Nastase C, Stamatin I (2006) PAN–PAni nanocomposites obtained in thermocentrifugal fields. Thin Solid Films 495(1):113–117CrossRefGoogle Scholar
  31. 31.
    Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41(10):1345–1367CrossRefGoogle Scholar
  32. 32.
    Baughman RH, Zakhidov AA, De Heer WA (2002) Carbon nanotubes-the route toward applications. Science 297(5582):787–792PubMedCrossRefGoogle Scholar
  33. 33.
    Lau AKT, Hui D (2002) The revolutionary creation of new advanced materials-carbon nanotube composites. Compos B 33(4):263–277CrossRefGoogle Scholar
  34. 34.
    Chou TW, Gao L, Thostenson ET, Zhang Z, Byun JH (2010) An assessment of the science and technology of carbon nanotube-based fibers and composites. Compos Sci Technol 70(1):1–19CrossRefGoogle Scholar
  35. 35.
    Sandler J, Kirk J, Kinloch I, Shaffer M, Windle A (2003) Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44(19):5893–5899CrossRefGoogle Scholar
  36. 36.
    Lorenz CD, Ziff RM (2001) Precise determination of the critical percolation threshold for the three-dimensional “Swiss cheese” model using a growth algorithm. J Chem Phys 114(8):3659–3661CrossRefGoogle Scholar
  37. 37.
    Stanley HE (1977) Cluster shapes at the percolation threshold: and effective cluster dimensionality and its connection with critical-point exponents. J Phys A: Math Gen 10(11):L211CrossRefGoogle Scholar
  38. 38.
    Duan Y, Liu S, Guan H (2006) Investigation of electromagnetic characteristics of polyaniline composite. J Compos Mater 40(12):1093–1104CrossRefGoogle Scholar
  39. 39.
    Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma Y, Li F, Chen Y, Eklund PC (2006) Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Saini P, Choudhary V, Singh B, Mathur R, Dhawan S (2009) Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater Chem Phys 113(2):919–926CrossRefGoogle Scholar
  41. 41.
    Yang Y, Gupta MC, Dudley KL, Lawrence RW (2005) A comparative study of EMI shielding properties of carbon nanofiber and multi-walled carbon nanotube filled polymer composites. J Nanosci Nanotechnol 5(6):927–931PubMedCrossRefGoogle Scholar
  42. 42.
    Colaneri NF, Schacklette L (1992) EMI shielding measurements of conductive polymer blends. IEEE Trans Instrum Meas 41(2):291–297CrossRefGoogle Scholar
  43. 43.
    Lee C, Song H, Jang K, Oh E, Epstein A, Joo J (1999) Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth Met 102(1):1346–1349CrossRefGoogle Scholar
  44. 44.
    Kim B, Lee H, Park S, Kim H (2011) Electromagnetic interference shielding characteristics and shielding effectiveness of polyaniline-coated films. Thin Solid Films 519(11):3492–3496CrossRefGoogle Scholar
  45. 45.
    Li Y, Pei X, Shen B, Zhai W, Zhang L, Zheng W (2015) Polyimide/graphene composite foam sheets with ultrahigh thermostability for electromagnetic interference shielding. RSC Adv 5(31):24342–24351CrossRefGoogle Scholar
  46. 46.
    Cao M-S, Wang X-X, Cao W-Q, Yuan J (2015) Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J Mater Chem C 3(26):6589–6599CrossRefGoogle Scholar
  47. 47.
    Singh AP, Garg P, Alam F, Singh K, Mathur R, Tandon RP, Chandra A, Dhawan SK (2012) Phenolic resin-based composite sheets filled with mixtures of reduced graphene oxide, γ-Fe2O3 and carbon fibers for excellent electromagnetic interference shielding in the X-band. Carbon 50(10):3868–3875CrossRefGoogle Scholar
  48. 48.
    Du L, Du Y, Li Y, Wang J, Wang C, Wang X, Xu P, Han X (2010) Surfactant-Assisted Solvothermal Synthesis of Ba (CoTi) x Fe12–2xO19 Nanoparticles and Enhancement in Microwave Absorption Properties of Polyaniline. J Phys Chem C 114(46):19600–19606CrossRefGoogle Scholar
  49. 49.
    Naito Y, Suetake K (1971) Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans Microw Theory Techn 19(1):65–72CrossRefGoogle Scholar
  50. 50.
    Wu F, Xu Z, Wang Y, Wang M (2014) Electromagnetic interference shielding properties of solid-state polymerization conducting polymer. RSC Adv 4(73):38797–38803CrossRefGoogle Scholar
  51. 51.
    Mottahed BD (2000) Enhanced shielding effectiveness of polymer matrix composite enclosures utilizing constraint-based optimization. Polym Eng Sci 40(1):61–69CrossRefGoogle Scholar
  52. 52.
    Nam I, Lee H, Jang J (2011) Electromagnetic interference shielding/absorbing characteristics of CNT-embedded epoxy composites. Compos A 42(9):1110–1118CrossRefGoogle Scholar
  53. 53.
    Bahadorzadeh M, Lotfi-Neyestanak AA (2012) A novel and efficient technique for improving shielding effectiveness of a rectangular enclosure using optimized aperture load. Elektronika ir Elektrotechnika 18(10):89–92CrossRefGoogle Scholar
  54. 54.
    Luo X, Chung D (1999) Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos B 30(3):227–231CrossRefGoogle Scholar
  55. 55.
    Li M, Drewniak JL, Radu S, Nuebel J, Hubing TH, DuBroff RE, Doren TPV (2001) An EMI estimate for shielding-enclosure evaluation. IEEE Trans Electromagn Compat 43(3):295–304CrossRefGoogle Scholar
  56. 56.
    Bigg D (1987) The effect of chemical exposure on the EMI shielding of conductive plastics. Polym Compos 8(1):1–7CrossRefGoogle Scholar
  57. 57.
    Gerteisen S, Nangrani K (1988) Plastics that shield against EMI/RFI. Society of Plastic Engineers, Inc., Chicago Section Electric and Electronics Division, Rosemont ILGoogle Scholar
  58. 58.
    Kim H, Kim K, Lee C, Joo J, Cho S, Yoon HS, Pejaković DA, Yoo JW, Epstein AJ (2004) Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl Phys Lett 84(4):589–591CrossRefGoogle Scholar
  59. 59.
    Joo J, Lee C (2000) High frequency electromagnetic interference shielding response of mixtures and multilayer films based on conducting polymers. J Appl Phys 88(1):513–518CrossRefGoogle Scholar
  60. 60.
    Lee C, Lee D, Jeong C, Hong Y, Shim J, Joo J, Kim MS, Lee JY, Jeong SH, Byun SW, Zang DS, Yang HG (2002) Electromagnetic interference shielding by using conductive polypyrrole and metal compound coated on fabrics. Polym Adv Technol 13(8):577–583CrossRefGoogle Scholar
  61. 61.
    Sankaran S, Dasgupta S, Sekhar KR, Kumar MJ (2006) Thermosetting polymer composites for EMI shielding applications. In: Proceedings of the 9th international conference on electromagnetic interference and compatibility (INCEMIC), IEEE, pp 1–6Google Scholar
  62. 62.
    Dixon D, Masi J (1989) Development of a composite material with long-term EMI shielding properties. SAMPE J 25:31–37Google Scholar
  63. 63.
    Bai J, Allaoui A (2003) Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites—experimental investigation. Compos A 34(8):689–694CrossRefGoogle Scholar
  64. 64.
    Tsotra P, Friedrich K (2003) Electrical and mechanical properties of functionally graded epoxy-resin/carbon fibre composites. Compos A 34(1):75–82CrossRefGoogle Scholar
  65. 65.
    Olivero DA, Radford DW (1997) Integrating EMI shielding into composite structure. SAMPE J 33(1):51–57Google Scholar
  66. 66.
    Sarto MS, Michele S, Leerkamp P, Thuis H (2001) An innovative shielding concept for EMI reduction. IEEE EMC Soc Newsl Summer 22–28Google Scholar
  67. 67.
    Guire T, Varadan VV, Varadan V (1990) Influence of chirality on the reflection of EM waves by planar dielectric slabs. IEEE Trans Electromagn Compat 32(4):300–303CrossRefGoogle Scholar
  68. 68.
    Bigg DM (1979) Mechanical, thermal, and electrical properties of metal fiber-filled polymer composites. Polym Eng Sci 19(16):1188–1192CrossRefGoogle Scholar
  69. 69.
    Foy JV, Lindt JT (1987) Electrical properties of exfoliated-graphite filled polyester based composites. Polym Compos 8(6):419–426CrossRefGoogle Scholar
  70. 70.
    Chiou J-M, Zheng Q, Chung D (1989) Electromagnetic interference shielding by carbon fibre reinforced cement. Composites 20(4):379–381CrossRefGoogle Scholar
  71. 71.
    Jana P, Mallick A, De S (1991) Electromagnetic interference shielding by carbon fibre-filled polychloroprene rubber composites. Composites 22(6):451–455CrossRefGoogle Scholar
  72. 72.
    Ahmad M, Abdelazeez M, Zihlif A (1989) Microwave properties of the talc filled polypropylene. J Mater Sci 24(5):1795–1800CrossRefGoogle Scholar
  73. 73.
    Awan FG, Sheikh NM, Qureshi SA Ali A (2008) A generic model for the classification of radiation emission data in electromagnetic compatibility measurement. In: Radio and wireless symposium, IEEE pp 315–318Google Scholar
  74. 74.
    Arai K, Xu G, Sugimoto O (1989) Micro-gap discharge waveshapes and radiated electromagnetic waves in atmospheric air and sulphur hexafluoride gas. Electrical Engineering in Japan 109(4):7–16CrossRefGoogle Scholar
  75. 75.
    Jana PB, Chaudhuri S, Pal A, De S (1992) Electrical conductivity of short carbon fiber-reinforced polychloroprene rubber and mechanism of conduction. Polym Engin Sci 32(6):448–456CrossRefGoogle Scholar
  76. 76.
    Běhal M, Ducháček V (1988) Thermovulcanization of polychloroprene rubber and its blends with poly (vinyl chloride). J Appl Polym Sci 35(2):507–515CrossRefGoogle Scholar
  77. 77.
    Tibbetts GG, Lake ML, Strong KL, Rice BP (2007) A review of the fabrication and properties of vapor-grown carbon nanofiber/polymer composites. Compos Sci Technol 67(7):1709–1718CrossRefGoogle Scholar
  78. 78.
    Al-Saleh MH, Sundararaj U (2009) A review of vapor grown carbon nanofiber/polymer conductive composites. Carbon 47(1):2–22CrossRefGoogle Scholar
  79. 79.
    Wang L-L, Tay B-K, See K-Y, Sun Z, Tan L-K, Lua D (2009) Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47(8):1905–1910CrossRefGoogle Scholar
  80. 80.
    Al-Saleh MH, Sundararaj U (2010) Processing-microstructure-property relationship in conductive polymer nanocomposites. Polymer 51(12):2740–2747CrossRefGoogle Scholar
  81. 81.
    Al-Saleh MH, Sundararaj U (2011) Electrically conductive carbon nanofiber/polyethylene composite: effect of melt mixing conditions. Polym Adv Technol 22(2):246–253CrossRefGoogle Scholar
  82. 82.
    Lee BO, Woo WJ, Kim MS (2001) EMI shielding effectiveness of carbon nanofiber filled poly (vinyl alcohol) coating materials. Macromol Mater Eng 286(2):114–118CrossRefGoogle Scholar
  83. 83.
    Lee B, Woo W, Park H, Hahm H, Wu J, Kim M (2002) Influence of aspect ratio and skin effect on EMI shielding of coating materials fabricated with carbon nanofiber/PVDF. J Mater Sci 37(9):1839–1843CrossRefGoogle Scholar
  84. 84.
    Wu J, Chung D (2002) Increasing the electromagnetic interference shielding effectiveness of carbon fiber polymer–matrix composite by using activated carbon fibers. Carbon 40(3):445–447CrossRefGoogle Scholar
  85. 85.
    Zou T, Zhao N, Shi C, Li J (2011) Microwave absorbing properties of activated carbon fibre polymer composites. Bull Mater Sci 34(1):75–79CrossRefGoogle Scholar
  86. 86.
    Rahaman M, Chaki TK, Khastgir D (2011) High-performance EMI shielding materials based on short carbon fiber-filled ethylene vinyl acetate copolymer, acrylonitrile-butadiene copolymer, and their blends. Polym Compos 32(11):1790–1805CrossRefGoogle Scholar
  87. 87.
    Antolini E (2009) Carbon supports for low-temperature fuel cell catalysts. Appl Cat B: Environ 88(1):1–24Google Scholar
  88. 88.
    Ahmed S, Aitani A, Rahman F, Al-Dawood A, Al-Muhaish F (2009) Decomposition of hydrocarbons to hydrogen and carbon. Appl Cat A: Gen 359(1):1–24CrossRefGoogle Scholar
  89. 89.
    Huang JC (2002) Carbon black filled conducting polymers and polymer blends. Adv Polym Technol 21(4):299–313CrossRefGoogle Scholar
  90. 90.
    Sánchez-González J, Macías-García A, Alexandre-Franco M, Gómez-Serrano V (2005) Electrical conductivity of carbon blacks under compression. Carbon 43(4):741–747CrossRefGoogle Scholar
  91. 91.
    Sahoo BP, Naskar K, Tripathy DK (2012) Conductive carbon black-filled ethylene acrylic elastomer vulcanizates: physico-mechanical, thermal, and electrical properties. J Mater Sci 47(5):2421–2433CrossRefGoogle Scholar
  92. 92.
    Ghosh P, Chakrabarti A (2000) Conducting carbon black filled EPDM vulcanizates: assessment of dependence of physical and mechanical properties and conducting character on variation of filler loading. Eur Polym J 36(5):1043–1054CrossRefGoogle Scholar
  93. 93.
    Mohanraj G, Chaki T, Chakraborty A, Khastgir D (2006) AC impedance analysis and EMI shielding effectiveness of conductive SBR composites. Polym Eng Sci 46(10):1342–1349CrossRefGoogle Scholar
  94. 94.
    Madani M (2010) Conducting carbon black filled NR/IIR blend vulcanizates: Assessment of the dependence of physical and mechanical properties and electromagnetic interference shielding on variation of filler loading. J Polym Res 17(1):53CrossRefGoogle Scholar
  95. 95.
    Ling Q, Sun J, Zhao Q, Zhou Q (2011) Effects of carbon black content on microwave absorbing and mechanical properties of linear low density polyethylene/ethylene-octene copolymer/calcium carbonate composites. Polym-Plast Technol Eng 50(1):89–94CrossRefGoogle Scholar
  96. 96.
    Oh J-H, Oh K-S, Kim C-G, Hong C-S (2004) Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos B 35(1):49–56CrossRefGoogle Scholar
  97. 97.
    Al-Saleh MH, Sundararaj U (2008) Electromagnetic interference (EMI) shielding effectiveness of PP/PS polymer blends containing high structure carbon black. Macromol Mater Eng 293(7):621–630CrossRefGoogle Scholar
  98. 98.
    Ma CCM, Huang YL, Kuan HC, Chiu YS (2005) Preparation and electromagnetic interference shielding characteristics of novel carbon-nanotube/siloxane/poly-(urea urethane) nanocomposites. J Polym Sci, Part B: Polym Phys 43(4):345–358 CrossRefGoogle Scholar
  99. 99.
    Heremans J, Beetz C Jr (1985) Thermal conductivity and thermopower of vapor-grown graphite fibers. Phys Rev B 32(4):1981CrossRefGoogle Scholar
  100. 100.
    Heremans J (1985) Electrical conductivity of vapor-grown carbon fibers. Carbon 23(4):431–436CrossRefGoogle Scholar
  101. 101.
    Endo M, Kim Y, Hayashi T, Nishimura K, Matusita T, Miyashita K, Dresselhaus MS (2001) Vapor-grown carbon fibers (VGCFs): basic properties and their battery applications. Carbon 39(9):1287–1297CrossRefGoogle Scholar
  102. 102.
    Gamaly EG, Ebbesen TW (1995) Mechanism of carbon nanotube formation in the arc discharge. Phys Rev B 52(3):2083CrossRefGoogle Scholar
  103. 103.
    Hirahara K, Suenaga K, Bandow S, Kato H, Okazaki T, Shinohara H, Iijima S (2000) One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys Rev Lett 85(25):5384PubMedCrossRefGoogle Scholar
  104. 104.
    Scott CD, Arepalli S, Nikolaev P, Smalley RE (2001) Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process. Appl Phys A Mater Sci Process 72(5):573–580CrossRefGoogle Scholar
  105. 105.
    Ren ZF, Huang ZP, Wang DZ, Wen JG, Xu JW, Wang JH, Calvet LE, Chen J, Klemic JF, Reed MA (1999) Growth of a single freestanding multiwall carbon nanotube on each nanonickel dot. Appl Phys Lett 75(8):1086–1088CrossRefGoogle Scholar
  106. 106.
    Kong J, Cassell AM, Dai H (1998) Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem Phys Lett 292(4):567–574CrossRefGoogle Scholar
  107. 107.
    Fan Z, Luo G, Zhang Z, Zhou L, Wei F (2006) Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater Sci Eng, B 132(1):85–89CrossRefGoogle Scholar
  108. 108.
    Arjmand M, Mahmoodi M, Gelves GA, Park S, Sundararaj U (2011) Electrical and electromagnetic interference shielding properties of flow-induced oriented carbon nanotubes in polycarbonate. Carbon 49(11):3430–3440CrossRefGoogle Scholar
  109. 109.
    Thomassin J-M, Lou X, Pagnoulle C, Saib A, Bednarz L, Huynen I, Jérôme R, Detrembleur C (2007) Multiwalled carbon nanotube/poly (ε-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J Phys Chem C 111(30):11186–11192CrossRefGoogle Scholar
  110. 110.
    Gupta A, Choudhary V (2011) Electromagnetic interference shielding behavior of poly (trimethylene terephthalate)/multi-walled carbon nanotube composites. Compos Sci Technol 71(13):1563–1568CrossRefGoogle Scholar
  111. 111.
    Song K, Zhang Y, Meng J, Green EC, Tajaddod N, Li H, Minus ML (2013) Structural polymer-based carbon nanotube composite fibers: understanding the processing–structure–performance relationship. Mater 6(6):2543–2577CrossRefGoogle Scholar
  112. 112.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV (2004) Electric field effect in atomically thin carbon films. Firsov, Science (Washington, DC, U. S.) 306:666–669Google Scholar
  113. 113.
    Moon JS, Gaskill DK (2011) Graphene: its fundamentals to future applications. IEEE Trans Microwave Theory Tech 59:2702–2708CrossRefGoogle Scholar
  114. 114.
    Liang J, Wang Y, Huang Y, Ma Y, Liu Z, Cai J, Zhang C, Gao H, Chen Y (2009) Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47:922–925CrossRefGoogle Scholar
  115. 115.
    Bhattacharya P, Das CK, Kalra SS (2012) Graphene and MWCNT: potential candidate for microwave absorbing materials. J Mater Sci Res 1:126–132Google Scholar
  116. 116.
    Fang M, Tang Z, Lu H, Nutt SJ (2012) Strategies for chemical modification of graphene and applications of chemically modified graphene. Mater Chem 22:109–114CrossRefGoogle Scholar
  117. 117.
    Basavaraja C, Kim WJ, Kim YD, Huh DS (2011) Synthesis of polyaniline-gold/graphene oxide composite and microwave absorption characteristics of the composite films. Mater Lett 65:3120–3123CrossRefGoogle Scholar
  118. 118.
    Chen YJ, Nguyen DD, Li YA, Yip MC, Hsu WK, Tai NH (2011) Investigation of the electric conductivity and the electromagnetic interference shielding efficiency of SWCNTs/GNS/PAni nanocomposites. Diamond Relat Mater 20:1183–1187CrossRefGoogle Scholar
  119. 119.
    Yu H, Wang T, Wen B, Lu M, Xu Z, Zhu C, Chen Y, Xue X, Sun C, Cao MJ (2012) Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption properties. Mater Chem 22:21679–21685CrossRefGoogle Scholar
  120. 120.
    Wen B, Cao M, Lu M, Cao W, Shi H, Liu J, Wang X, Jin H, Fang X, Wang W, Yuan J (2014) Reduced graphene oxides: light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater 26:3484PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Cao WQ, Wang XX, Yuan J, Wang WZ, Cao MS (2015) Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C 3:10017CrossRefGoogle Scholar
  122. 122.
    He JZ, Wang XX, Zhang YL, Cao MS (2016) Small magnetic nanoparticles decorating reduced graphene oxides to tune the electromagnetic attenuation capacity. J Mater Chem C 4:7130CrossRefGoogle Scholar
  123. 123.
    Yousefi N, Sun X, Lin X, Shen X, Jia J, Zhang B, Tang B, Chan M, Kim JK (2014) Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater 26:5480CrossRefGoogle Scholar
  124. 124.
    Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC (2010) High Nanofiller-Content Nanoocomposites via Vacuum-Assisted Self-Assembly. Adv Funct Mater 20:3322–3329CrossRefGoogle Scholar
  125. 125.
    Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25CrossRefGoogle Scholar
  126. 126.
    Kumar P, Kumar A, Cho KY, Das TK, Sudarsan V (2017) An asymmetric electrically conducting self-aligned graphene/polymer composite thin film for efficient electromagnetic interference shielding, American Institute of Physics. AIP Adv 7:015103. Scholar
  127. 127.
    Wong K, Pickering S, Rudd C (2010) Recycled carbon fibre reinforced polymer composite for electromagnetic interference shielding. Compos A 41(6):693–702CrossRefGoogle Scholar
  128. 128.
    Rahaman M, Chaki T, Khastgir D (2012) Modeling of DC conductivity for ethylene vinyl acetate (EVA)/polyaniline conductive composites prepared through insitu polymerization of aniline in EVA matrix. Compos Sci Technol 72(13):1575–1580CrossRefGoogle Scholar
  129. 129.
    Su C, Xu L, Zhang C, Zhu J (2011) Selective location and conductive network formation of multiwalled carbon nanotubes in polycarbonate/poly (vinylidene fluoride) blends. Compos Sci Technol 71(7):1016–1021CrossRefGoogle Scholar
  130. 130.
    Al-Saleh MH, Sundararaj U (2009) Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7):1738–1746CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Rubber Technology Centre, Indian Institute of Technology KharagpurKharagpurIndia
  2. 2.Department of Chemistry, Maharaja Agrasen CollegeUniversity of DelhiNew DelhiIndia
  3. 3.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations