Synthesis/Preparation of Carbon Materials

  • Purabi Bhagabati
  • Mostafizur RahamanEmail author
  • Subhendu BhandariEmail author
  • Indranil Roy
  • Ayan Dey
  • Prashant Gupta
  • M. A. Ansari
  • Aastha Dutta
  • Dipankar Chattopadhyay
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)


This chapter focuses on the synthesis/preparation of different carbon materials namely, diamond, fullerene, graphite, carbon black, carbon fiber, carbon nanofiber, carbon nanotube, and graphene. Though there are several methods of synthesis/preparation of carbons, the most common and important ones are discussed herein. The synthesis of diamond has been majorly focussed by chemical vapor deposition (CVD) method, whereas the other ion beam sputtering method and an ionized deposition method has also been mentioned herein. The preparation of carbon black by various processes has been reported. Moreover, carbon black is also prepared by pyrolysis of polymer and hydrocarbon, plasma synthesis, and by hydrolysis of natural resources. Carbon fibers of high performance derived from different precursors are discussed in details. Carbon nanofiber is synthesized by CVD as well as electrospinning and template methods. Physical methods like laser ablation, arc discharge, and chemical method like CVD are used to prepared carbon nanotube effectively. Two approaches namely top-down and bottom-up are considered to discuss the synthesis of graphene by different methods. The methods are discussed pictorially or diagrammatically where necessary.


Diamond Fullerene Graphite Carbon black Carbon fiber Carbon nanofiber Carbon nanotube Graphene 


  1. 1.
    Hannay JB (1880) On the artificial formation of the diamond. J Franklin Inst 110(2):123–135CrossRefGoogle Scholar
  2. 2.
    Bundy FP, Bovenkerk HP, Strong HM, Wentorf RH Jr (1961) Diamond-graphite equilibrium line from growth and graphitization of diamond. J Chem Phys 35(2):383–391CrossRefGoogle Scholar
  3. 3.
    Giardini AA, Kohn JA, Eckart DW, Tydings JE (1961) The formation of coesite and kyanite from pyrophyllite at very high pressures and high temperatures. Am Mineral 46:976–983Google Scholar
  4. 4.
    De Carli PS, Milton DJ (1965) Stishovite: synthesis by shock wave. Science 147(3654):144–145PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Eversole WG (1962) US Patent No. 3030 187 Washington DC: US Patent and Trademark OfficeGoogle Scholar
  6. 6.
    Hall HT (1960) Ultra-high-pressure, high-temperature apparatus: the”belt”. Rev Sci Instrum 31(2):125–131CrossRefGoogle Scholar
  7. 7.
    Giardini AA, Tydings JE (1962) Diamond synthesis-observations on mechanism of formation. Am Mineral 47(11–1):1393Google Scholar
  8. 8.
    Eversole WG (1962) US Patent No. 3030188 Washington DC: US Patent and Trademark OfficeGoogle Scholar
  9. 9.
    Eversole WG (1958) Diamond synthesis. US patents (3030187) 3030188Google Scholar
  10. 10.
    Setaka N (1984) Low pressure gas phase synthesis of diamonds. Hyomen (Surface) 22:110–117Google Scholar
  11. 11.
    Kamo M, Sato Y, Matsumoto S, Setaka N (1983) Diamond synthesis from gas phase in microwave plasma. J Cryst Growth 62(3):642–644CrossRefGoogle Scholar
  12. 12.
    Mōri T, Namba Y (1983) Hard diamondlike carbon films deposited by ionized deposition of methane gas. J Vac Sci Technol, A 1(1):23–27CrossRefGoogle Scholar
  13. 13.
    Kitabatake M, Wasa K (1985) Growth of diamond at room temperature by an ion-beam sputter deposition under hydrogen-ion bombardment. J Appl Phys 58(4):1693–1695CrossRefGoogle Scholar
  14. 14.
    Luo C, Qi X, Pan C, Yang W (2015) Diamond synthesis from carbon nanofibers at low temperature and low pressure. Sci Rep 5:13879PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kazi S (2014) A review article on nanodiamonds discussing their properties and applications. Int J Pharm Sci Inv 3:40–45Google Scholar
  16. 16.
    Fang L, Ohfuji H, Irifune T (2013) A novel technique for the synthesis of nanodiamond powder. J Nanomater 2013:41Google Scholar
  17. 17.
    Baidakova M (2007) New prospects and frontiers of nanodiamond clusters. J Phys D Appl Phys 40(20):6300CrossRefGoogle Scholar
  18. 18.
    Kroto HW, Heath JR, O’brien SC, Curl RF, Smalley REC (1985) This week’s citation classic®. Nature 318:162–163CrossRefGoogle Scholar
  19. 19.
    Guo T, Jin C, Smalley RE (1991) Doping bucky: formation and properties of boron-doped buckminsterfullerene. J Phys Chem 95(13):4948–4950CrossRefGoogle Scholar
  20. 20.
    Heath JR, Curl RF, Smalley RE (1987) The UV absorption spectrum of C60 (buckminsterfullerene): a narrow band at 3860 Å. J Chem Phys 87(7):4236–4238CrossRefGoogle Scholar
  21. 21.
    Rohlfing EA, Cox DM, Kaldor A (1984) Production and characterization of supersonic carbon cluster beams. J Chem Phys 81(7):3322–3330CrossRefGoogle Scholar
  22. 22.
    Kroto H (1988) Space stars C60 and soot. Science 242(4882):1139–1145PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Haufler RE, Conceicao J, Chibante LPF, Chai Y, Byrne NE, Flanagan S, Flanagan S, Haley MM, O’Brien SC, Pan C (1990) Efficient production of C60 (buckminsterfullerene), C60H36, and the solvated buckide ion. J Phys Chem 94(24):8634–8636CrossRefGoogle Scholar
  24. 24.
    Howard JB, McKinnon JT, Makarovsky Y, Lafleur AL, Johnson ME (1991) Fullerenes C60 and C70 in flames. Nature 352(6331):139PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Scott LT (2004) Methods for the chemical synthesis of fullerenes. Angew Chem Int Ed 43(38):4994–5007CrossRefGoogle Scholar
  26. 26.
    Howard JB, Kronholm DF, Modestino AJ, Richter H (2008) U.S. Patent No. 7,396,520. Washington, DC: U.S. Patent and Trademark OfficeGoogle Scholar
  27. 27.
    Takehara H, Fujiwara M, Arikawa M, Diener MD, Alford JM (2005) Experimental study of industrial scale fullerene production by combustion synthesis. Carbon 43(2):311–319CrossRefGoogle Scholar
  28. 28.
    Saim S, Kuo KC, Stalling DL (1993) Supercritical fluid extraction of fullerenes C60 and C70 from carbon soot. Sep Sci Technol 28(8):1509–1525CrossRefGoogle Scholar
  29. 29.
    Chiu CC, Lo JC, Teng MH (2012) A novel high efficiency method for the synthesis of graphite encapsulated metal (GEM) nanoparticles. Diam Relat Mater 24:179–183CrossRefGoogle Scholar
  30. 30.
    Panaitescu C, Predeanu G (2010) Petrographic research applied to carbon materials. Rev Roum Chim 55:301–310Google Scholar
  31. 31.
    Predeanu G, Panaitescu C, Bălănescu M, Bieg G, Borrego AG, Diez MA, Hackley PB, Kwiecińska M, Marques M, Mastalerz M, Misz-Kennan S, Pusz I, Suárez Ruiz S, Rodrigues A, SinghK A, Varma K, Zdravkov A, Životić D (2015) Microscopical characterization of carbon materials derived from coal and petroleum and their interaction phenomena in making steel electrodes, anodes and cathode blocks for the Microscopy of Carbon Materials Working Group of the ICCP. Int J Coal Geol 139(l):63–79CrossRefGoogle Scholar
  32. 32.
    Niyogi S, Bekyarova E, Itikis ME, McWilliams JL, Hammon MA, Haddon RC (2006) Solution properties of graphite and graphene. J Am Chem Soc 128:7720–7721PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRefGoogle Scholar
  34. 34.
    Schniepp HC, Li JL, Mc Allister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud’homme, RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535–8539PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Hontoria-Lucas C, Lopez-Peinado AJ, opez-Gonzalez JDL, Rojas-Cervantes ML, Martin-Aranda RM(1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33:1585–1592CrossRefGoogle Scholar
  36. 36.
    Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Stankovich S, Dikin DA, Dommmett GHB, Kohlhaas KM, Zimney EJ, Stach EA, Piner RDS, Nguyen T, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282–286PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Li D, Muller MB, Gilje S, Kaner RB, Wallace GG (2008) Processable aqueous dispersions of graphene nanosheets. Nat Nanotechnol 2:101–105CrossRefGoogle Scholar
  39. 39.
    Mukherjee A, Kang JH, Kuznetsov O, Sun Y, Thaner R, Bratt AS, Lomeda JR, Kelly KF, Billups WE (2011) Water-soluble graphite nanoplatelets formed by oleum exfoliation of graphite. Chem Mater 23:9–13CrossRefGoogle Scholar
  40. 40.
    Zhao MF, Liu P (2009) Adsorption of methylene blue from aqueous solutions by modified expanded graphite powder. Desalination 249:331–336CrossRefGoogle Scholar
  41. 41.
    Zhou YY, Wang SW, Kim KN, Li JH, Yan XP (2006) Evaluation of expanded graphite as on-line solid-phase extraction sorbent for high performance liquid chromatographic determination of trace levels of DDTs in water samples. Talanta 69:970–975PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Toyoda M, Inagaki M (2000) Heavy oil sorption using exfoliated graphite: new application of exfoliated graphite to protect heavy oil pollution. Carbon 38:199–210CrossRefGoogle Scholar
  43. 43.
    Wang L, Fu X, Chang E, Wu H, Zhang K, Lei X, Zhang R, Qi X, Yang Y (2014) Preparation and its adsorptive property of modified expanded graphite nanomaterials. J Chem 2014:678151Google Scholar
  44. 44.
    Anderson Axdal SH, Chung DDL (1987) A theory for the kinetics of intercalation of graphite. Carbon 25:377–389CrossRefGoogle Scholar
  45. 45.
    Holliday AK, Hughes G, Walker Carbon SM ( 1973) In: Bailar HJ, Emeleus R, Nyholm AF Trotman-Dickenson JC (eds Comprehensive inorganic chemistry. Pergamon Press, OxfordGoogle Scholar
  46. 46.
    Cataldo F, Valentini F, Cherubini V, Ursini O, Angelini G (2012) Synthesis of expanded graphite flakes by the submerged carbon arc in oleum. Fullerenes Nanotubes Carbon Nanostruct 20:152–162CrossRefGoogle Scholar
  47. 47.
    Rudorff W (1939) Kristallstruktur der Säureverbindungen des Graphits. Z Phys Chem 45:42–69Google Scholar
  48. 48.
    Kang F, Leng Y, Zhang TY (1997) Electrochemical synthesis and characterization of formic acid-graphite intercalation compound. Carbon 35:1089–1096CrossRefGoogle Scholar
  49. 49.
    Avdeev VV, Monyakina LA, Nikol’skaya IV, Sorokina NE, Semenenko KN (1992) Finaenov AI Chemical synthesis of graphite hydrogenosulfate: calorimetry and potentiometry studies. Carbon 30:825–827CrossRefGoogle Scholar
  50. 50.
    Yakovlev AV, Finaenov AI, Zabud’kov SL, Yakovleva EV (2006) Thermally expanded graphite: synthesis, properties, and prospects for use. Russ J Appl Chem 79:1741–1751CrossRefGoogle Scholar
  51. 51.
    Strativnov EV (2015) Design of modern reactors for synthesis of thermally expanded graphite. Nanoscale Res Lett 10:245PubMedCentralCrossRefGoogle Scholar
  52. 52.
    Zhang F, Zhao Q, Yan X, Li H, Zhang P, Wang L, Zhou T, Li Y, Ding L (2016) Rapid preparation of expanded graphite by microwave irradiation for the extraction of triazine herbicides in milk samples. Food Chem 197:943–949PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Łoś S, Duclaux L, Alvarez L, Hawełek Ł, Duber S, Kempiński W (2013) Cleavage and size reduction of graphite crystal using ultrasound radiation. Carbon 55:53–61CrossRefGoogle Scholar
  54. 54.
    Alaferdov AV, Gholamipour-Shirazi A, Canesqui MA, Danilov YA, Moshkalev SA (2014) Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite. Carbon 69:525–535CrossRefGoogle Scholar
  55. 55.
    Jess E, Jones Michael C, Cheshire Dominick J, Jr Casadonte, Carol C (2004) Phifer facile sonochemical synthesis of graphite intercalation compounds. Org Lett 6:1915–1917CrossRefGoogle Scholar
  56. 56.
    Chen G, Weng W, Wu D, Wu C, Lu J, Wang P, Chen X (2004) Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42:753–759CrossRefGoogle Scholar
  57. 57.
    Hirano SI, Nakamura K, Somiya S (1989) Graphitization of carbon in the presence of calcium compounds under hydrothermal conditions by use of high gas pressure apparatus. In: Somiya S (eds) Hydrothermal reactions for materials science and engineering. Elsevier, London, pp 331–336CrossRefGoogle Scholar
  58. 58.
    Gogotsi YG, Yoshimura M (1994) Formation of carbon films on carbides under hydrothermal conditions. Nature 30:367–628Google Scholar
  59. 59.
    Libera J, Gogotsi Y (2001) Hydrothermal synthesis of graphite tubes using Ni catalyst. Carbon 39:1307–1318CrossRefGoogle Scholar
  60. 60.
    Chung SR, Wang KW, Teng MH, Perng TP (2009) Electrochemical hydrogenation of nanocrystalline face-centered cubic Co powder. Int J Hydrog Energy 34:1383–1388CrossRefGoogle Scholar
  61. 61.
    Bystrzejewski M, Pyrzyńska K, Huczko A, Lange H (2009) Carbon-encapsulated magnetic nanoparticles as separable and mobile sorbents of heavy metal ions from aqueous solutions. Carbon 47:1189–1206CrossRefGoogle Scholar
  62. 62.
    Saraswati TE, Prasiwi ODI, Masykur A, Anwar M (2017) Bifunctional catalyst of graphite-encapsulated iron compound nanoparticle for magnetic carbon nanotubes growth by chemical vapor deposition. In AIP conference proceedings 1788:030029Google Scholar
  63. 63.
    Tomita M, Saito Y, Hayashi T (1993) LaC2 encapsulated in graphite nano-particle. Jpn J Appl Phys 32:L280–L282CrossRefGoogle Scholar
  64. 64.
    Ruoff RS, Lorents DC, Chan B, Malhotra R, Subramoney S (1993) Single crystal metals encapsulated in carbon nanoparticles. Science 259:346–348PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Kräschmer W, Huffman DR (1992) Fullerites: new forms of crystalline carbon. Carbon 30:1143–1147CrossRefGoogle Scholar
  66. 66.
    Dravid VP, Host JJ, Teng MH, Elliott BR, Hwang JH, Johnson DL, Mason TO, Weertman JR (1995) Controlled-size nanocapsules. Nature 374–602Google Scholar
  67. 67.
    Elliot BR, Host JJ, Dravid VP, Teng MH, Hwang JH (1997) A descriptive model linking possible formation mechanisms for graphite-encapsulated nanocrystals to processing parameters. J Mater Res 12:3328–3344CrossRefGoogle Scholar
  68. 68.
    Shikin AM, Prudnikova GV, Adamchuk VK, Soe WH, Rieder KH, Molodtsov SL, Laubschat C (2002) Synthesis of graphite monolayer stripes on a stepped Ni(771) surface. Phys Solid State 44:677–680CrossRefGoogle Scholar
  69. 69.
    Miao JY, Hwang DW, Narasimhulu KV, Lin PI, Chen YT, Lin SH, Hwang LP (2004) Synthesis and properties of carbon nanospheres grown by CVD using Kaolin supported transition metal catalysts. Carbon 4:813–822CrossRefGoogle Scholar
  70. 70.
    Koltypin Y, Fernandez A, Rojas TC, Campora J, Palma P, Prozorov R, Gedanken A (1999) Encapsulation of nickel nanoparticles in carbon obtained by the sonochemical decomposition of Ni(C8H12)2. Chem Mater 11:1331–1335CrossRefGoogle Scholar
  71. 71.
    Hayashi T, Hirono S, Tomita M, Umemura S (1996) Magnetic thin films of cobalt nanocrystals encapsulated in graphite-like carbon. Nature 381:772–774CrossRefGoogle Scholar
  72. 72.
    Liu B, Jia D, Rao J, Zuo P, Shao Y (2009) A self-assembly template approach for preparing hollow carbon microspheres. J Solid State Electrochem 13:497–501CrossRefGoogle Scholar
  73. 73.
    Seraphin S, Zhou D, Jiao J (1996) Filling the carbon nanocages. J Appl Phys 80:2097–2104CrossRefGoogle Scholar
  74. 74.
    Ye E, Liu B, Fan WY (2007) Preparation of graphite-coated iron nanoparticles using pulsed laser decomposition of Fe3(CO)12 and PPh3 in hexane. Chem Mater 19:3845–3849CrossRefGoogle Scholar
  75. 75.
    Liu Y, Ren Z, Wei Y, Jiang B, Feng S, Zhang L, Zhang W, Fu H (2010) Synthesis and applications of graphite carbon sphere with uniformly distributed magnetic Fe3O4 nanoparticles (MGCSs) and MGCS@Ag, MGCS@TiO2. J Mater Chem 20:4802–4808CrossRefGoogle Scholar
  76. 76.
    Goldfinger MB, Swager TM (1994) Fused polycyclic aromatics via electrophile-induced cyclization reactions: application to the synthesis of graphite ribbons. J Am Chem Soc 116:7895–7896CrossRefGoogle Scholar
  77. 77.
    Heera V, Skorupa W, Pe´cz B, Dobos L (2000) Ion beam synthesis of graphite and diamond in silicon carbide. Appl Phys Lett 76:2847–2849CrossRefGoogle Scholar
  78. 78.
    Goh M, Matsushita S, Akagi K (2010) From helical polyacetylene to helical graphite synthesis in the chiral nematic liquid crystal field and morphology-retaining carbonization. Chem Soc Rev 39:2466–2476PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Thu TV, Tanizawa Y, Phuc NHH, Ko PJ, Sandhu A (2013) Synthesis and characterization of graphite nanoplatelets. J Phys: Conf Ser 433:012003Google Scholar
  80. 80.
    Giardini AA, Salotti CA, Lakner JF (1968) Synthesis of graphite and hydrocarbons by reaction between calcite and hydrogen. Science 159:317–319PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Slawson CB (1953) Synthesis of graphite at room temperatures. Am Mineral 38:50–55Google Scholar
  82. 82.
    Dimovski S, Nikitin A, Ye H, Gogotsi Y (2004) Synthesis of graphite by chlorination of iron carbide at moderate temperatures. J Mater Chem 14:238–243CrossRefGoogle Scholar
  83. 83.
    Okuno H, Palnichenko A, Despres JF, Issi JP, Charlier JC (2005) Synthesis of graphite polyhedral crystals using a combustion flame method. Carbon 43:692–697CrossRefGoogle Scholar
  84. 84.
    Ohkawara Y, Shinada T, Fukada Y, Ohshio S, Saitoh H (2003) Synthesis of graphite using laser decomposition of SiC. J Mater Sci 30:2447–2453CrossRefGoogle Scholar
  85. 85.
    Parkash S (2010) Petroleum fuels manufacturing handbook: including specialty products and sustainable manufacturing techniques. The McGraw-Hill Companies, New YorkGoogle Scholar
  86. 86.
    Drogin I (2012) Carbon black. J Air Pollut Control Assoc (TI-2 Chemical committee informative report No.09)Google Scholar
  87. 87.
    Mohan AN, Manoj B (2012) Synthesis and characterization of carbon nanospheres from hydrocarbon soot. Int J Electrochem Sci 7:9537–9549Google Scholar
  88. 88.
    Ivie JJ, Forney LJ (1988) A numerical model of the synthesis of carbon black by benzene pyrolysis. AIChE J 34:1813–1820CrossRefGoogle Scholar
  89. 89.
    Abrahamson J (1977) Saturated platelets are new intermediates in hydrocarbon pyrolysis and carbon formation. Nature 266:323–327CrossRefGoogle Scholar
  90. 90.
    Vié R, Drahi E, Baudino O, Blayac S, Berthon-Fabry S (2016) Synthesis of carbon nanospheres for the development of inkjet-printed resistive layers and sensors. Flex Print Electron 1:015003CrossRefGoogle Scholar
  91. 91.
    Guo XF, Kim GJ (2010) Synthesis of ultrafine carbon black by pyrolysis of polymers using a direct current thermal plasma process. Plasma Chem Plasma Process 30:75–90CrossRefGoogle Scholar
  92. 92.
    Yuan JJ, Hong RY, Wang YQ, Feng WG (2016) Plasma preparation of carbon black used in conductive coatings. Polym Compos 37:1078–1084CrossRefGoogle Scholar
  93. 93.
    Nguyen M, Kimz TSJ (2015) Nano carbon black powder synthesized via liquid phase plasma process as a supercapacitor active material. J Electrochem Soc 162:A1445–A1450CrossRefGoogle Scholar
  94. 94.
    Wang L, Wang X, Zou B, Ma X, Qu Y, Rong C, Li Y, Su Y, Wang Z (2011) Preparation of carbon black from rice husk by hydrolysis, carbonization and pyrolysis. Bioresour Technol 102:8220–8224PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Lu W, Chung DDL (2001) Preparation of conductive carbons with high surface area. Carbon 39:39–44CrossRefGoogle Scholar
  96. 96.
    Wang L, GuoY Zou B, Rong C, Ma X, Qu Y, Li Y, Wang Z (2011) High surface area porous carbons prepared from hydrochars by phosphoric acid activation. Bioresour Technol 102:1947–1950PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    De J, Lopez-Gonzalez D, Martinez-Vilchez F, Rodriguez-Reinoso F (1980) Preparation and characterization of active carbons from olive stones. Carbon 18:413–418CrossRefGoogle Scholar
  98. 98.
    Hu Z, Srinivasan M (1999) Preparation of high-surface-area activated carbons from coconut shell. Microporous Mesoporous Mater 27:11–18CrossRefGoogle Scholar
  99. 99.
    Tam MS, Antal MJ (1999) Preparation of activated carbons from macadamia nut shell and coconut shell by air activation. Ind Eng Chem Res 38:4268–4276CrossRefGoogle Scholar
  100. 100.
    Sarkar SC, Bose A (1997) Role of activated carbon pellets in carbon dioxide removal. Energy Convers Manage 38:S105–S110CrossRefGoogle Scholar
  101. 101.
    Su W, Zhou Y, Wei L, Sun Y, Zhou L (2007) Effect of microstructure and surface modification on the hydrogen adsorption active carbons. New Carbon Mater 22:135–140CrossRefGoogle Scholar
  102. 102.
    Yang K, Peng J, Srinivasakanna C, Zhang L, Xia H (2010) Preparation of high surface area activated carbon from coconut shells using microwave heating. Bioresour Technol 101:6163–6169PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Gao H, Song Z, Yang L, Wu H (2016) Synthesis method of white carbon black utilizing water-quenching blast furnace slag. Energy Fuels 30:9645–9651CrossRefGoogle Scholar
  104. 104.
    Park SJ, Heo GY (2015) Precursors and manufacturing of carbon fibers. Springer, Berlin, pp 31–66Google Scholar
  105. 105.
    Huang X (2009) Fabrication and properties of carbon fibers. Materials 2:2369–2403PubMedCentralCrossRefGoogle Scholar
  106. 106.
    Edie DD (1998) The effect of processing on the structure and properties of carbon fibers. Carbon 36(4):345–362CrossRefGoogle Scholar
  107. 107.
    Hanna SB, Yehia AA, Ismail MN, Khalaf AI (2012) Preparation and characterization of carbon fibers from polyacrylonitrile precursors. J Appl Polym Sci 123:2074–2083CrossRefGoogle Scholar
  108. 108.
    Kim YA, Hayashi T, Endo M, Dresselhaus MS (2011) Carbon nanofibers. Springer, Belin, pp 2–27Google Scholar
  109. 109.
    Giraldo L, Ladino Y, Pirajánc JCM, Rodríguez MP (2007) Synthesis and characterization of activated carbon fibers from Kevlar. Eclet Quím 32(4):55–62CrossRefGoogle Scholar
  110. 110.
    Sahin K, Nicholas AF, Chasiotis I, Lyons KM, Newcomb BA, Kamath MG, Chae HG, Kumar S (2014) High strength micron size carbon fibers from polyacrylonitrile–carbon nanotube precursors. Carbon 77:442–453CrossRefGoogle Scholar
  111. 111.
    Rosas RR, Bedia J, Lallave M, Loscertales IG, Barrero A, Mirasol JR, Cordero T (2010) The production of submicron diameter carbon fibers by the electrospinning of lignin. Carbon 48:696–705CrossRefGoogle Scholar
  112. 112.
    Maradur SP, Kim CH, Kim SY, Kim BH, Kim WC, Yang KS (2012) Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synth Met 162:453–459CrossRefGoogle Scholar
  113. 113.
    Kim BJ, Eom Y, Kato O, Miyawaki J, Kim BC, Mochida I, Yoon SH (2014) Preparation of carbon fibers with excellent mechanical properties from isotropic pitches. Carbon 77:747–755CrossRefGoogle Scholar
  114. 114.
    Sun M, Li J, Wang Y, Zhang X (2015) Preparation of carbon fiber reinforced cement-based composites using self-made carbon fiber mat. Constr Build Mater 79:283–289CrossRefGoogle Scholar
  115. 115.
    Derbyshire F, Andrews R, Berkovich A, Jacques D, Jagtoyen M, Rantell T (2001) Synthesis of isotropic carbon fibers from pitch precursors. Fuel 80(3):345–356CrossRefGoogle Scholar
  116. 116.
    Wazir AH, Lutfullah K (2009) Preparation and characterization of pitch-based carbon fibers. New Carbon Mater 24(1):83–88CrossRefGoogle Scholar
  117. 117.
    Hao KT, Shiang LJ (2006) The effect of a chemical vapor deposited carbon film from acetylene on the properties of graphitized PAN-based carbon fibers. New Carbon Mater 21(4):296–301Google Scholar
  118. 118.
    Zhang L, Aboagye A, Kelkar A, Lai C, Fong H (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49(2):463–480CrossRefGoogle Scholar
  119. 119.
    Price RL, Ellison K, Haberstroh KM, Webster TJ (2004) Nanometer surface roughness increases select osteoblast adhesion on carbon nanofiber compacts. J Biomed Mater Res, Part A 70(1):129–138CrossRefGoogle Scholar
  120. 120.
    Jong KPD, Geus JW (2000) Carbon nanofibers: catalytic synthesis and applications. Catal Rev 42(4):481–510CrossRefGoogle Scholar
  121. 121.
    Marella M, Tomaselli M (2006) Synthesis of carbon nanofibers and measurements of hydrogen storage. Carbon 44(8):140–1413CrossRefGoogle Scholar
  122. 122.
    Kong J, Soh HT, Cassell AM, Quate CF, Dai H (1998) Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers. Nature 395(6705):878–881CrossRefGoogle Scholar
  123. 123.
    Yang S, Taha-Tijerina J, Serrato-Diaz V, Hernandez K, Lozano K (2007) Dynamic mechanical and thermal analysis of aligned vapor grown carbon nanofiber reinforced polyethylene. Compos Part B Eng 38(2):228–235CrossRefGoogle Scholar
  124. 124.
    Fan YY, Cheng HM, Wei YL, Su G, Shen ZH (2000) The influence of preparation parameters on the mass production of vapor-grown carbon nanofibers. Carbon 38(6):78–795Google Scholar
  125. 125.
    Bonet F, Grugeon S, Dupont L, Herrera Urbina R, Gue´ry C, Tarascon JM (2003) Synthesis and characterization of bimetallic Ni–Cu particles. J Solid State Chem 172(1):111–5CrossRefGoogle Scholar
  126. 126.
    Zarur AJ, Ying JY (2000) Reverse microemulsion synthesis of nanostructured complex oxides for catalytic combustion. Nature 403(6765):65–67PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Baker RTK, Barber MA, Harris PS, Feates FS, Waite RJ (1972) Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. J Catal 26(1):51–62CrossRefGoogle Scholar
  128. 128.
    Schouten FC, Kaleveld EW, Bootsma GA (1977) AES-LEED-ellipsometry study of the kinetics of the interaction of methane with Ni(110). Surf Sci 63:460–474CrossRefGoogle Scholar
  129. 129.
    Schouten FC, Gijzeman OLJ, Bootsma GA (1979) Interaction of methane with Ni(111) and Ni(100); diffusion of carbon into nickel through the (100) surface; an aes-leed study. Surf Sci 87:1–12CrossRefGoogle Scholar
  130. 130.
    Eatemadi A, Daraee H, Zarghami N, Melat YH, Akbarzadeh A (2016) Nanofiber: synthesis and biomedical applications. Artif Cells Nanomed Biotechnol 44(1):111–121PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Zhang B, Kang F, Tarascon JM, Kim JK (2016) Recent advances in electrospun carbon nanofibers and their application in electrochemical energy storage. Prog Mater Sci 76:319–380CrossRefGoogle Scholar
  132. 132.
    Li W, Zhang F, Dou YQ, Wu ZX, Liu HJ, Qian XF, Gu D, Xia YY, Tu B, Zhao DY (2011) A self-template strategy for the synthesis of mesoporous carbon nanofibers as advanced supercapacitor electrodes. Adv Energy Mater 1:382–386CrossRefGoogle Scholar
  133. 133.
    Luong ND, Lee Y, Nam JD (2008) Facile transformation of nanofibrillar polymer aerogel to carbon nanorods catalyzed by platinum nanoparticles. J Mater Chem 18:4254–4259CrossRefGoogle Scholar
  134. 134.
    Feng D, Lv YY, Wu ZX, Dou YQ, Han L, Sun ZK, Xia YY, Zheng GF, Zhao DY (2011) Free-standing mesoporous carbon thin films with highly ordered pore architectures for nanodevices. J Am Chem Soc 133:15148–15156PubMedCrossRefGoogle Scholar
  135. 135.
    Chrzanowska J, Hoffman J, Melolepszy A, Mazurkiewicz M, Kowalewski TA, Szymanski Z, Stobinski L (2015) Synthesis of carbon nanotubes by the laser ablation method: effect of laser wavelength. Phys Status Solidi B 252:1860–1867CrossRefGoogle Scholar
  136. 136.
    Arora N, Sharma NN (2014) Arc discharge synthesis of carbon nanotubes: comprehensive review. Diamond Relat Mater 50:135–150CrossRefGoogle Scholar
  137. 137.
    Andrews R, Jacques D, Qian D, Rantell T (2002) Multiwall carbon nanotubes: synthesis and application. Acc Chem Res 35:1008–1017PubMedCrossRefGoogle Scholar
  138. 138.
    Nikolaev P, Bronikowski M, Bradley J, Kelley R, Rohmund F, Colbert D, Smith T, Smalley RE (1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Let 313:91–97CrossRefGoogle Scholar
  139. 139.
    Resasco DE, Alvarez WE, Pompeo F, Balzano L, Herrera JE, Kitiyanan B, Borgna A (2002) A scalable process for production of single-walled carbon nanotubes (SWNTS) by catalytic disproportionation of Co on a solid catalyst. J Nanopart Res 4:131–136CrossRefGoogle Scholar
  140. 140.
    Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V, Kizek R (2011) Methods for carbon nanotubes synthesis—review. Mater Chem 21:15872–15884CrossRefGoogle Scholar
  141. 141.
    Rafique MMA, Iqbal J (2011) Production of carbon nanotubes by different routes—a review. JEAS 1:29–34CrossRefGoogle Scholar
  142. 142.
    Kumar U, Sikarwar S, Sonekar RK, Yadav BC (2016) Carbon nanotube: synthesis and application in solar cell. JIOPM 26:1231–1242Google Scholar
  143. 143.
    Lebel LL, Aissa B, Khakani MAE, Therriault D (2010) Compos Sci Technol 70:518–524CrossRefGoogle Scholar
  144. 144.
    Kusaba M, Tsunawaki Y (2006) Production of single-wall carbon nanotubes by a XeCl excimer laser ablation. Thin Solid Films 506:255–258CrossRefGoogle Scholar
  145. 145.
    Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  146. 146.
    Bethune DS, Kiang CH, Devries MS, Gorman G, Savoy R, Vazquez J, Beyers R (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363:605–607CrossRefGoogle Scholar
  147. 147.
    Ajayan PM, Lambert JM, Bernier P, Barbedette L, Colliex C, Planeix JM (1993) Growth morphologies during cobalt-catalyzed single-shell carbon nanotube synthesis. Chem Phys Lett 215:509–517CrossRefGoogle Scholar
  148. 148.
    Seraphin S, Zhou D, Jiao J, Minke MA, Wang S, Yadav T, Withers JC (1994) Catalytic role of nickel, palladium, and platinum in the formation of carbon nanoclusters. Chem Phys Lett 217:191–198CrossRefGoogle Scholar
  149. 149.
    Saito Y, Okuda M, Fujimoto N, Yoshikawa T, Tomita M, Hayashi T (1994) Single wall carbon nanotubes growing radially from Ni fine particles formed by arc evaporation. Jpn J Appl Phys Part 2(33):L526–L529CrossRefGoogle Scholar
  150. 150.
    Zhou D, Seraphin S, Wang S (1994) Single-walled carbon nanotubes growing radially from YC2 particles. Appl Phys Lett 65:1593–1595CrossRefGoogle Scholar
  151. 151.
    Saito Y, Nishikubo K, Kawabata K, Matsumoto T (1996) Carbon nanocapsules and single layered nanotubes produced with platinum group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. J Appl Phys 80:3062–3067CrossRefGoogle Scholar
  152. 152.
    Saito Y, Okuda M, Koyama T (1996) Carbon nanocapsules and single-wall carbon nanotubes formed by arc evaporation. Surf Rev Lett 3:863–867CrossRefGoogle Scholar
  153. 153.
    Chen B, Zhao X, Inoue S, Ando Y (2010) Fabrication and dispersion evaluation of single-wall carbon nanotubes produced by FH-arc discharge method. J Nanosci Nanotechnol 10:3973–3977PubMedCrossRefGoogle Scholar
  154. 154.
    Chen B, Inoue S, Ando Y (2009) Raman spectroscopic and thermogravimetric studies of high-crystallinity SWNTs synthesized by FH-arc discharge method. Diamond Relat Mater 18:975–978CrossRefGoogle Scholar
  155. 155.
    Fan WW, Zhao J, Lv YK, Bao WR, Liu XG (2010) Synthesis of SWNTs from charcoal by arc-discharging. J Wuhan Univ Technol-Mater Sci Ed 25:194–196CrossRefGoogle Scholar
  156. 156.
    Ando Y, Zhao X, Kataura H, Achiba Y, Kaneto K, Tsuruta M, Uemura S, Iijima S (2000) Multiwalled carbon nanotubes prepared by hydrogen arc. Diamond Relat Mater 9:847–851CrossRefGoogle Scholar
  157. 157.
    Pillai SK, Augustyn WG, Rossouw MH, McCrindle RI (2008) The effect of calcination on multi-walled carbon nanotubes produced by Dc-arc discharge. J Nanosci Nanotechnol 8:3539–3544PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Chaturvedi P, Verma P, Singh A, Chaudhary PK, Harsh, Basu PK (2008) Carbon nanotube–purification and sorting protocols. Def Sci J 58:591–599CrossRefGoogle Scholar
  159. 159.
    Saeed K (2010) Review on properties, dispersion and toxicology of carbon nanotubes. J Chem Soc Pak 32:559–564Google Scholar
  160. 160.
    Pillai SK, Ray SS, Moodley M (2007) Purification of single-walled carbon nanotubes. J Nanosci Nanotechnol 7:3011–3047PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    MacKenzie K, Dunens O, Harris AT (2009) A review of carbon nano-tube purification by microwave assisted acid digestion. Sep Purif Technol 66:209–222CrossRefGoogle Scholar
  162. 162.
    Xu Y, Dervishi E, Biris AR, Biris AS (2011) Chirality-enriched semiconducting carbon nanotubes synthesized on high surface area MgO-supported catalyst. Mater Lett 65:1878–1881CrossRefGoogle Scholar
  163. 163.
    Okazaki T, Shinohara H (2003) Synthesis and characterization of single-wall carbon nanotubes by hot-filament assisted chemical vapor deposition. Chem Phys Lett 5–6:606–611CrossRefGoogle Scholar
  164. 164.
    Chen YM, Zhang HZ (2011) In: Bu JL, Jiang ZY, Jiao S (eds) Advances in composites. Trans Tech Publications Ltd, Stafa-Zurich, Pts 1 and 2, pp 1560–1563Google Scholar
  165. 165.
    Varshney D, Weiner BR, Morell G (2010) Growth and field emission study of a monolithic carbon nanotube/diamond composite. Carbon 48:3353–3358CrossRefGoogle Scholar
  166. 166.
    Patole SP, Alegaonkar PS, Lee HC, Yoo YB (2008) Optimization of water assisted chemical vapor deposition parameters for super growth of carbon nanotubes. Carbon 46:1987–1993CrossRefGoogle Scholar
  167. 167.
    Tempel H, Joshi R, Schneider JJ (2010) Ink jet printing of ferritin as method for selective catalyst patterning and growth of multiwalled carbon nanotubes. Mater Chem Phys 121:178–183CrossRefGoogle Scholar
  168. 168.
    Byon HR, Lim H, Song HJ, Choi HC (2007) A synthesis of high purity single-walled carbon nanotubes from small diameters of cobalt nanoparticles by using oxygen-assisted chemical vapor deposition process. Bull Korean Chem Soc 28:2056–2060CrossRefGoogle Scholar
  169. 169.
    Brown B, Parker CB, Stoner BR, Glass JT (2011) Growth of vertically aligned bamboo-like carbon nanotubes from ammonia/methane precursors using a platinum catalyst. Carbon 49:266–274CrossRefGoogle Scholar
  170. 170.
    Kim HD, Lee Choi WS (2011) direct growth of carbon nanotubes with a catalyst of nickel nanoparticle-coated alumina powders. J Korean Phys Soc 58:112–115CrossRefGoogle Scholar
  171. 171.
    Steiner SA, Baumann TF, Bayer BC, Blume R, Worsley MA, MoberlyChan WJ, Shaw EL, Schlogl R, Hart AJ, Hofmann S, Wardle BL (2009) Nanoscale Zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes. J Am Chem Soc 131:12144–1215PubMedCrossRefGoogle Scholar
  172. 172.
    Zhu YJ, Lin TJ, Liu QX, Chen YL, Zhang GF, Xiong HF, Zhang HY (2006) The effect of nickel content of composite catalysts synthesized by hydrothermal method on the preparation of carbon nanotubes. Mater Sci Eng B 127:198–202CrossRefGoogle Scholar
  173. 173.
    Cumings J, Mickelson W, Zettl A (2003) Simplified synthesis of double wall carbon nanotubes. Solid State Commun 126:359–362CrossRefGoogle Scholar
  174. 174.
    Deck CP, Mckee GSB, Vecchio KS (2006) Synthesis optimization & characterization of multi walled carbon nanotubes. J Electron Mater 35:211–223CrossRefGoogle Scholar
  175. 175.
    Kim SM, Gangloff L (2009) Growth of carbon nanotubes (CNTs) on metallic underlayers by diffusion plasma-enhanced chemical vapour deposition (DPECVD). Physica E Low Dimens Syst Nanostruct 41:1763–1766CrossRefGoogle Scholar
  176. 176.
    Wang H, Moore JJ (2008) Different growth mechanisms of vertical carbon nanotubes by RF- or dc-plasma enhanced chemical vapor deposition at low temperature. J Vac Sci Technol B 28:1081–1085CrossRefGoogle Scholar
  177. 177.
    Flahaut E, Laurent C, Peigney A (2005) Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation. Carbon 43:375–383CrossRefGoogle Scholar
  178. 178.
    Xiang X, Zhang L, HimaHI Li F, Evans DG (2009) Co-based catalysts from Co/Fe/Al layered double hydroxides for preparation of carbon nanotubes. Appl Clay Sci 42:405–409CrossRefGoogle Scholar
  179. 179.
    Luais E, Thobie-Gautier C, Tailleur A, Djouadi MA, Granier A, Tessier PY, Debarnot D, Poncin-Epaillard F, Boujtita M (2010) Preparation and modification of carbon nanotubes electrodes by cold plasmas processes toward the preparation of amperometric biosensors. Electrochim Acta 55:7916–7922CrossRefGoogle Scholar
  180. 180.
    Haffner M, Schneider K, Schuster BE, Stamm B, Latteyer Fleischer M, Burkhardt Chasse T, Stett A, Kern DP (2010) Plasma enhanced chemical vapor deposition grown carbon nanotubes from ferritin catalyst for neural stimulation microelectrodes. Microelectron Eng 87:734–737CrossRefGoogle Scholar
  181. 181.
    Yamada T, Namai T, Hata K, Futaba DN, Mizuno K, Fan J, Yudasaka M, Yumura M, Iijima S (2006) Size-selective growth of double-walled carbon nanotube forests from engineered iron catalysts. Nat Nanotechnol 1:131–136PubMedCrossRefPubMedCentralGoogle Scholar
  182. 182.
    Seo JK, Jung H, Lee JH, Deok SY, Young JJ, Choi WS (2010) Metal-free CNTs grown on glass substrate by microwave PECVD. Curr Appl Phys 10:S447–S450CrossRefGoogle Scholar
  183. 183.
    Byeon H, Kim SY, Koh KH, Lee S (2010) Growth of ultra long multiwall carbon nanotube arrays by aerosol-assisted chemical vapor deposition. J Nanosci Nanotechnol 10:6116–6119PubMedCrossRefPubMedCentralGoogle Scholar
  184. 184.
    Jeong N, Seo Y, Lee J (2007) vertically aligned carbon nanotubes synthesized by the thermal pyrolysis with an ultrasonic evaporator. Diamond Relat Mater 16:600–608CrossRefGoogle Scholar
  185. 185.
    Liu J, Zhang Y, Ionescu MI, Li R, Sun X (2011) Nitrogen-doped carbon nanotubes with tunable structure and high yield produced by ultrasonic spray pyrolysis. Appl Surf Sci 257:7837–7844CrossRefGoogle Scholar
  186. 186.
    Ionescu MI, Zhang Y, Li R, Sun X, Abou-Rachid H, Lussier L-S (2011) Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: parametric studies. Appl Surf Sci 257:6843–6849CrossRefGoogle Scholar
  187. 187.
    Kucukayan G, Ovali R, Ilday S, Baykal B, Yurdakul H, Turan S, Gulseren O, Bengu E (2011) An experimental and theoretical examination of the effect of sulphur on the pyrolytically grown carbon nanotubes from sucrose-Based Solid State Precursors. Carbon 49:508–517CrossRefGoogle Scholar
  188. 188.
    Endo M, Takeuchi K, Igarashi S, Kobori K, Shiraishi M, Kroto HW (1993) The production and structure of pyrolytic carbon nanotubes (PCNTs). J Phys Chem Solids 541:841–1848Google Scholar
  189. 189.
    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, San Diego, pp 763–764CrossRefGoogle Scholar
  190. 190.
    Isaacs JA, Tanwani A, Healy ML, Dahlben LJ (2010) Economic assessment of single-walled carbonnanotube processes. J Nanopart Res 12:551–562CrossRefGoogle Scholar
  191. 191.
    Nikolaev P, Bronikowski MJ, Bradley RK, Rohmund F, Colbert DT, Smith KA, Smalley RE (͑1999) Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem Phys Lett 313:91Google Scholar
  192. 192.
    Bronikowski MJ, Willis PA, Colbert DT, Smith KA, Smalley RE (2001) Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: a parametric study. J Vac Sci Technol A 19:1800–1805CrossRefGoogle Scholar
  193. 193.
    Smalley RE, Yakobson B (1998) the future of the fullerenes. Solid State Com 107:597–606CrossRefGoogle Scholar
  194. 194.
    Tang ZK, Zhang L, Wang N, Zhang XX, Wen GH, Li GD (2001) Superconductivity in 4 Å single walled carbon nanotubes. Science 292:2462–2465PubMedCrossRefPubMedCentralGoogle Scholar
  195. 195.
    Lolli G, Zhang LA, Balzano L, Sakulchaicharoen N, Tan YQ, Resasco DE (2006) Tailoring (n, m) structure of single-walled carbon nanotubes by modifying reaction conditions and the nature of the support of CoMo catalysts. J Phys Chem B 110:2108–2115PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Alvarez WE, Kitiyanan B, Borgna A, Resasco DE (2001) Synergism of Co and Mo in the catalytic production of single-wall carbon nanotubes by decomposition of CO. Carbon 39:547–558CrossRefGoogle Scholar
  197. 197.
    Wal V, Randall L, Hall LJ, Berger GM (2002) Optimization of flame synthesis for carbon nanotubes using supported catalyst. J Phys Chem B 106:13122–13132CrossRefGoogle Scholar
  198. 198.
    Wal V, Randall L, Ticich TM (2001) Flame and furnace synthesis of single-walled and multi-walled carbon nanotubes and nanofibers. J Phys Chem B 105:10249–10256Google Scholar
  199. 199.
    Liu YC, Zheng NN, Huang JD, Sun BM (2011) In: Wang CH, Ma LX, Yang W (eds) Advanced polymer science and engineering. Trans Tech Publications Ltd, Stafa-Zurich, pp 99–103Google Scholar
  200. 200.
    Liu YC, Sun BM, Ding ZY (2011) In: Wang CH, Ma LX Yang W (eds) Advanced polymer science and engineering, pp 235–239Google Scholar
  201. 201.
    Dewulf DW, Jin T, Bard AJ (1989) Electrochemical and surface studies of carbon dioxide reduction to methane and ethylene at copper electrodes in aqueous solutions. J Electrochem Soc 136:1686–1691CrossRefGoogle Scholar
  202. 202.
    Shawky A, Yasuda S, Murakoshi K (2012) Room-temperature synthesis of single-wall carbon nanotubes by an electrochemical process. Carbon 11:4184–4191CrossRefGoogle Scholar
  203. 203.
    Zhou D, Chow L (2004) electrochemical deposition of carbon nanoparticles from organic solutions. US Patent 6,758,957 B1Google Scholar
  204. 204.
    Zhou D, Anoshkina EV, Chow L, Chai G (2006) Synthesis of carbon nanotubes by electrochemical deposition at room temperature. Carbon 44:1013–1024CrossRefGoogle Scholar
  205. 205.
    Stankovich S, Piner RD, Nguyen ST, Ruoff RS (2006) Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon 44:3342–3347CrossRefGoogle Scholar
  206. 206.
    Wang S, Tang LAI, Bao Q, Lin M, Deng S, Goh BM Loh KP (2009) Room-temperature synthesis of soluble carbon nanotubes by the sonication of graphene oxide nanosheets. J Am Chem Soc 131:16832–16837PubMedCrossRefPubMedCentralGoogle Scholar
  207. 207.
    Singh V, Joung D, Zhai L, Das S, Khondaker SI, Seal S (2011) Graphene based materials: past, present and future. Prog Mater Sci 56:1178–1271CrossRefGoogle Scholar
  208. 208.
    Soldano C, Mahmood A, Dujardin E (2010) Production properties and potential of graphene. Carbon 48:2127–2150CrossRefGoogle Scholar
  209. 209.
    Kim H, Abdala AA, Macosko CW (2010) Graphene/polymer nanocomposites. Macromolecules 43:6515–6530CrossRefGoogle Scholar
  210. 210.
    Fernandez-Moran H (1960) Single crystal of graphite and mica as specimen support for electron microscopy. J Appl Phys 31:1840Google Scholar
  211. 211.
    Mason TJ, Lorimer JP (2002) Applied sonochemistry: the uses of power ultrasound in chemistry and processing. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  212. 212.
    Israelachvili JN (2011) Intermolecular and surface forces. Academic press, New York (revised 3rd edition)Google Scholar
  213. 213.
    Hernandez Y, Nicolosi V, Lotya M, Blighe FM, Sun Z, De S, McGovern IT, Holland B, Byrne M, Gun’Ko YK, Boland JJ, Niraj P, Duesberg G, Krishnamurthy S, Goodhue R, Hutchison J, Scardaci V, Ferrari AC, Coleman JN (2008) High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol 3:563–568PubMedCrossRefPubMedCentralGoogle Scholar
  214. 214.
    Ciesielski A, Samori P (2014) Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev 43:381–398PubMedCrossRefPubMedCentralGoogle Scholar
  215. 215.
    Parvez K, Li RJ, Puniredd SR, Hernandez Y, Hinkel F, Wang S, Feng X, Müllen K (2013) Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics. ACS Nano 7:3598–3606PubMedCrossRefPubMedCentralGoogle Scholar
  216. 216.
    Lee JH, Shin DW, Makotchenko VG, Nazarov AS, Fedorov VE, Kim YH, Choi JY, Kim JM, Yoo JB (2009) One-step exfoliation synthesis of easily soluble graphite and transparent conducting graphene sheets. Adv Mater 21:4383–4387PubMedCrossRefPubMedCentralGoogle Scholar
  217. 217.
    Liu BN, Luo F, Wu H, Liu Y, Zhang C, Chen J (2008) One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv Funct Mater 18:1518–1525CrossRefGoogle Scholar
  218. 218.
    Su CY, Lu AY, Xu YP, Chen FR, Khlobystov AN, Li LJ (2011) High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano 5:2332–2339PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Lu J, Yang JX, Wang JZ, Lim AL, Wang S, Loh KP (2009) One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano 3:2367–2375PubMedCrossRefPubMedCentralGoogle Scholar
  220. 220.
    Liu JL, Yang HP, Zhen SG, Poh CK, Chaurasia A, Luo JS, Wu XY, Yeow EKL, Sahoo NG, Lin JY, Shen ZX (2013) A green approach to the synthesis of high-quality graphene oxide flakes via electrochemical exfoliation of pencil core. RSC Adv 3:11745–11750CrossRefGoogle Scholar
  221. 221.
    Eda G, Fanchini G, Chhowalla M (2008) Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat Nanotechnol 3:270–274PubMedCrossRefPubMedCentralGoogle Scholar
  222. 222.
    Shang NG, Papakonstantinou P, Sharma S, Lubarsky G, Li MX, McNeill DW, Quinn AJ, Zhou WZ, Blackley R (2012) Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding. Chem Commun 48:1877–1879CrossRefGoogle Scholar
  223. 223.
    Parvez K, Wu ZS, Li R, Liu X, Graf R, Feng X, Müllen K (2014) Exfoliation of graphite into graphene in aqueous solutions of inorganic salts. J Am Chem Soc 136:6083–6091PubMedCrossRefPubMedCentralGoogle Scholar
  224. 224.
    Rai PK, Pinnick RA, Parra-Vasquez ANG, Davis VA, Schmidt HK, Hauge RH, Smalley RE, Pasquali M (2006) Isotropic-nematic phase transition of single-walled carbon nanotubes in strong acids. J Am Chem Soc 128:591–595PubMedCrossRefPubMedCentralGoogle Scholar
  225. 225.
    Behabtu N, Lomeda JR, Green MJ, Higginbotham AL, Sinitskii A, Kosynkin DV, Tsentalovich D, Parra-Vasquez ANG, Schmidt J, Kesselman E, Cohen Y, Talmon Y, Tour JM, Pasquali M (2010) Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat Nanotechnol 5:406–411PubMedCrossRefPubMedCentralGoogle Scholar
  226. 226.
    Brodie BC (1859) On the atomic weight of graphite. Philos Trans R Soc Lond 149:249–259CrossRefGoogle Scholar
  227. 227.
    Staudenmaier L (1893) Verfahren zur darstellung der graphitsäure. Ber Dtsch Chem Ges 31:1481–1487CrossRefGoogle Scholar
  228. 228.
    Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339–1339CrossRefGoogle Scholar
  229. 229.
    Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4:4806–4814PubMedCrossRefPubMedCentralGoogle Scholar
  230. 230.
    Li W, Xu Z, Chen L, Shan M, Tian X, Yang C, Lv H, Qian X (2014) A facile method to produce graphene oxide-g-poly(L-lactic acid) as an promising reinforcement for PLLA nanocomposites. Chem Eng J 237:291–299CrossRefGoogle Scholar
  231. 231.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  232. 232.
    Wang G, Shen X, Wang B, Yao J, Park J (2009) Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon 47:1359–1364CrossRefGoogle Scholar
  233. 233.
    Stankovich S, Piner RD, Chen X, Wu N, Nguyen ST, Ruoff RS (2006) Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly (sodium 4-styrenesulfonate). J Mater Chem 16:155–158CrossRefGoogle Scholar
  234. 234.
    Lomeda JR, Doyle CD, Kosynkin DV, Hwang WF, Tour JM (2008) Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J Am Chem Soc 130:16201–16206PubMedCrossRefGoogle Scholar
  235. 235.
    Tung VC, Allen MJ, Yang Y, Kaner RB (2009) High-throughput solution processing of large-scale graphene. Nat Nanotechnol 4:25–29PubMedCrossRefGoogle Scholar
  236. 236.
    Shen JF, Hu YZ, Shi M, Lu X, Qin C, Li C, Ye MX (2009) Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem Mater 21:3514–3520CrossRefGoogle Scholar
  237. 237.
    Wang GX, Yang J, Park J, Gou XL, Wang B, Liu H, Yao J (2008) Facile synthesis and characterization of graphene nanosheets. J Phys Chem C 112:8192–8195CrossRefGoogle Scholar
  238. 238.
    Fan BX, Peng W, Li Y, Li X, Wang S, Zhang G, Zhang F (2008) Deoxygenation of exfoliated graphite oxide under alkaline conditions: a green route to graphene preparation. Adv Mater 20:4490–4493CrossRefGoogle Scholar
  239. 239.
    Shen X, Jiang L, Ji Z, Wu J, Zhou H, Zhu G (2011) Stable aqueous dispersions of graphene prepared with hexamethylenetetramine as a reductant. J Colloid Interface Sci 354:493–497PubMedCrossRefPubMedCentralGoogle Scholar
  240. 240.
    Bai S, Shen X (2012) Graphene–inorganic nanocomposites. RSC Adv 2:64–98CrossRefGoogle Scholar
  241. 241.
    Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD (2010) Vitamin c is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J Phys Chem C 114:6426–6432CrossRefGoogle Scholar
  242. 242.
    Gao J, Liu F, Liu YL, Ma N, Wang ZQ, Zhang X (2010) Environment-friendly method to produce graphene that employs vitamin C and amino acid. Chem Mater 22:2213–2218CrossRefGoogle Scholar
  243. 243.
    Zhu C, Guo S, Fang Y, Dong S (2010) Reducing sugar: new functional molecules for the green synthesis of graphene nanosheets. ACS Nano 4:2429–2437PubMedCrossRefPubMedCentralGoogle Scholar
  244. 244.
    Dreyer DR, Murali S, Zhu Y, Ruoff RS, Bielawski CW (2011) Reduction of graphite oxide using alcohols. J Mater Chem 21:3443–3447CrossRefGoogle Scholar
  245. 245.
    Zhang Z, Cheng H, Xing C, Guo M, Xu F, Wang X, Gruber HJ, Zhang B, Tang J (2011) Sodium citrate: a universal reducing agent for reduction/ decoration of graphene oxide with au nanoparticles. Nano Res 4:599–611CrossRefGoogle Scholar
  246. 246.
    Wang Y, Shi ZX, Yin J (2011) facile synthesis of soluble graphene via a green reduction of graphene oxide in tea solution and its biocomposites. ACS Appl Mater Interfaces 3:1127–1133PubMedCrossRefPubMedCentralGoogle Scholar
  247. 247.
    Roy I, Bhattacharyya A, Sarkar G, Saha NR, Rana D, Ghosh PP, Palit M, Das AR, Chattopadhyay D (2014) In situ synthesis of a reduced graphene oxide/cuprous oxide nanocomposite: a reusable catalyst. RSC Adv 4:52044–52052CrossRefGoogle Scholar
  248. 248.
    Roy I, Rana D, Sarkar G, Bhattacharyya A, Saha NR, Mondal S, Pattanayak S, Chattopadhyay S, Chattopadhyay D (2015) Physical and electrochemical characterization of reduced graphene oxide/silver nanocomposites synthesized by adopting a green approach. RSC Adv 5:25357CrossRefGoogle Scholar
  249. 249.
    Chen W, Yan L, Bangal PR (2010) Preparation of graphene by the rapid and mild thermal reduction of graphene oxide induced by microwaves. Carbon 48:1146–1152CrossRefGoogle Scholar
  250. 250.
    Zhou M, Wang Y, Zhai Y, Zhai J, Ren W, Wang F, Dong S (2009) Controlled synthesis of large-area and patterned electrochemically reduced graphene oxide films. Chem Eur J 15:6116–6120PubMedCrossRefPubMedCentralGoogle Scholar
  251. 251.
    An SJ, Zhu Y, Lee SH, Stoller MD, Emilsson T, Park S, Velamakanni A, An J, Ruoff RS (2010) Thin film fabrication and simultaneous anodic reduction of deposited graphene oxide platelets by electrophoretic deposition. J Phys Chem Lett 1:1259–1263CrossRefGoogle Scholar
  252. 252.
    Shao Y, Wang J, Engelhard M, Wang C Lin Y (2010) Facile and controllable electrochemical reduction of graphene oxide and its applications. J Mater Chem 20:743–748CrossRefGoogle Scholar
  253. 253.
    Yang X, Dou X, Rouhanipour A, Zhi L, Rader HJ, Mullen K (2008) Two-dimensional graphene nanoribbons. J Am Chem Soc 130:4216–4217PubMedCrossRefGoogle Scholar
  254. 254.
    Chee SY, Poh HL, Chua CK, Šaněk F, Sofer Z, Pumera M (2012) Influence of parent graphite particle size on the electrochemistry of thermally reduced graphene oxide. Phys Chem Chem Phys 14:12794–12799PubMedCrossRefGoogle Scholar
  255. 255.
    Badami DV (1962) Graphitization of α-silicon carbide. Nature 193:569–570CrossRefGoogle Scholar
  256. 256.
    Sutter PW, Flege JI, Sutter EA (2008) Epitaxial graphene on ruthenium. Nat Mater 7:406–411PubMedCrossRefGoogle Scholar
  257. 257.
    De Parga ALV, Calleja F, Borca B, Passeggi MCG, Hinarejos JJ, Guinea F, Miranda R (2008) Periodically rippled graphene: growth and spatially resolved electronic structure. Phys Rev Lett 100:056807CrossRefGoogle Scholar
  258. 258.
    Rao CNR, Subrahmanyam KS, Ramakrishna Matte HSS, Abdulhakeem B, Govindaraj A, Das B, Kumar P, Ghosh A, Late DJ (2010) A study of the synthetic methods and properties of graphenes. Sci Technol Adv Mater 11:054502PubMedPubMedCentralCrossRefGoogle Scholar
  259. 259.
    Subrahmanyam KS, Panchakarla LS, Govindaraj A, Rao CNR (2009) Simple method of preparing graphene flakes by an arc-discharge method. J Phys Chem C 113:4257–4259CrossRefGoogle Scholar
  260. 260.
    Panchakarla LS, Govindaraj A, Rao CNR (2009) Boron- and nitrogen-doped carbon nanotubes and graphene. Inorg Chim Acta 363:4163–4174CrossRefGoogle Scholar
  261. 261.
    Kim KS, Zhao Y, Jang H, Lee SY, Kim JM, Kim KS, Ahn JH, Kim P, Choi JY, Hong BH (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457:706–710PubMedCrossRefGoogle Scholar
  262. 262.
    Kwon SY, Ciobanu CV, Petrova V, Shenoy VB, Bareno J, Gambin V, Petrov I, Kodambaka S (2009) Growth of Semiconducting Graphene on Palladium. Nano Lett 9:3985–3990PubMedCrossRefGoogle Scholar
  263. 263.
    Coraux J, N‘Diaye AT, Busse C, Michely T (2008) Structural coherency of graphene on Ir (111). Nano Lett 8:565–570PubMedCrossRefGoogle Scholar
  264. 264.
    Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee SK, Colombo L, Ruoff RS (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324:1312–1314PubMedCrossRefPubMedCentralGoogle Scholar
  265. 265.
    Wang JJ, Zhu MY, Outlaw RA, Zhao X, Manos DM, Holloway BC, Mammana VP (2004) Free-standing subnanometer graphite sheets. Appl Phys Lett 85:1265–1267CrossRefGoogle Scholar
  266. 266.
    Shinde DB, Majumder M, Pillai VK (2014) Counter-ion dependent, longitudinal unzipping of multi-walled carbon nanotubes to highly conductive and transparent graphene nanoribbons. Sci Rep 4:4363PubMedPubMedCentralCrossRefGoogle Scholar
  267. 267.
    Kosynkin DV, Higginbotham AL, Sinitskii A, Lomeda JR, Dimiev A, Price BK, Tour JM (2009) Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:872–876PubMedCrossRefGoogle Scholar
  268. 268.
    Dabrowska A, Huczko A, Soszyński M, Bendjemil B, Micciulla F, Sacco I, Coderoni L, Bellucci S (2011) Ultra-fast efficient synthesis of one-dimensional nanostructures. Phys Status Solidi B 248:2704–2707CrossRefGoogle Scholar
  269. 269.
    Kim CD, Min BK, Jung WS (2009) Preparation of graphene sheets by the reduction of carbon monoxide. Carbon 47:1610–1612CrossRefGoogle Scholar
  270. 270.
    Chakrabarti A, Lu J, Skrabutenas JC, Xu T, Xiao Z, Maguireb JA, Hosmane NS (2011) Conversion of carbon dioxide to few-layer graphene. J Mater Chem 21:9491–9493CrossRefGoogle Scholar
  271. 271.
    Wang C, Ju J, Yang Y, Tang Y, Lin J, Shi Z, Han RPS, Huang F (2013) In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties. J Mater Chem A 1:8897–8902CrossRefGoogle Scholar
  272. 272.
    Li N, Wang Z, Zhao K, Shi Z, Gu Z, Xu S (2009) Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 48:255–259CrossRefGoogle Scholar
  273. 273.
    Miao Q, Wang L, Liu Z, Wei B, Xu F, Fei W (2016) Magnetic properties of N-doped graphene with high Curie temperature. Sci Rep 6:21832PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Purabi Bhagabati
    • 1
  • Mostafizur Rahaman
    • 2
    Email author
  • Subhendu Bhandari
    • 3
    Email author
  • Indranil Roy
    • 4
  • Ayan Dey
    • 3
  • Prashant Gupta
    • 3
  • M. A. Ansari
    • 3
  • Aastha Dutta
    • 3
  • Dipankar Chattopadhyay
    • 4
  1. 1.Chemical Engineering DepartmentIndian Institute of Technology GuwahatiGuwahatiIndia
  2. 2.Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  3. 3.Department of Plastic and Polymer EngineeringMaharashtra Institute of TechnologyAurangabadIndia
  4. 4.Department of Polymer Science and TechnologyUniversity of CalcuttaKolkataIndia

Personalised recommendations