Study the Effect of Ground on Circular Loop Patch Antenna (CLPA)

  • Abhishek Kumar SarojEmail author
  • Mohd. Gulman Siddiqui
  • Devesh
  • Jamshed A. Ansari
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 524)


This proposed article presents multiband circular ring loop patch antenna (CLPA). The design is simulated using HFSS tool and studied by varying the ground patch size (area). The substrate material FR-4 is used and studied for the frequency range from 1 to 30 GHz in the proposed article. After analysing the effect of change in ground (GND), it is found that multiband characteristics slightly change in terms of S11 (dB) parameter below 20 GHz and above 20 GHz bandwidth increases. The CLPA shows eight to ten resonating frequency bands. Simulated data show −40.98 (dB) reflection coefficient at the frequency 15.88 GHz in design 1; similarly, design 2, design 3, design 4, design 5, and design 6 obtain maximum reflection coefficient −33.76 (dB) at 10.70 GHz, −37.27 (dB) at 27.65 GHz, −36.43 (dB) at 10.70 GHz, −37.08 (dB) at 21.33 GHz, and −29.11 (dB) at 15.35 GHz. The proposed antenna can be applied in numerous wireless applications by selecting different ground size.


Multiband HFSS Microstrip patch antenna Reflection coefficient 


  1. 1.
    Thomas, K. G., & Sreenivasan, M. (2009). Compact triple band antenna for WLAN/WiMAX applications. IEEE Electronics Letters, 45(16).CrossRefGoogle Scholar
  2. 2.
    Verma, S., Ansari, J. A., & Verma, M. K. (2013). A novel compact multi-band microstrip antenna with multiband narrow slits. Microwave and Optical Technology Letters, 55(6), 1196–1198.CrossRefGoogle Scholar
  3. 3.
    Liu, C. S., Chiu, C. N., & Deng, S. M. (2008). A compact disc-slit monopole antenna for mobile devices. IEEE Antennas and Wireless Propagation Letters, 7, 251–254.CrossRefGoogle Scholar
  4. 4.
    Khajepour, S., Ghaffarian, M. S., & Moradi, G. (2017). Design of novel multiband folded printed quadrifilar helical antenna for GPS/WLAN applications. IEEE Electronics Letters, 53(2), 58–60.CrossRefGoogle Scholar
  5. 5.
    Liu, Y. F., Lau, K. L., Xue, Q., & Chan, C. H. (2004). Experimental studies of printed wide-slot antenna for wide-band applications. IEEE Antennas and Wireless Propagation Letters, 3, 273–275.CrossRefGoogle Scholar
  6. 6.
    Chen, W. S., & Ku, K. Y. (2008). Band-rejected design of printed open slot antenna for WLAN/WiMAX operation. IEEE Transactions on Antennas Propagation, 56(4), 1163–1169.Google Scholar
  7. 7.
    Dai, X. W., Wang, Z. Y., Liang, C. H., Chen, X., & Wang, L. T. (2013). Multiband dual-polarized omnidirectional antenna for 2G/3G/LTE applications. IEEE Antenna and Wireless Propagation Letters, 12, 1492–1495.CrossRefGoogle Scholar
  8. 8.
    Ding, K., Gao, C., Qu, D., & Yin, Q. (2017). Compact broadband circularly polarized antenna with parasitic patches. IEEE Transactions on Antenna and Propagation, 65(9), 4854–4857.CrossRefGoogle Scholar
  9. 9.
    Saroj, A. K., Siddiqui, M. G., Kumar, M., & Ansari, J. A. (2017). Design of multiband quad-rectangular shaped microstrip antenna for wireless applications. Progress in Electromagnetics Research M, 59, 213–217.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Abhishek Kumar Saroj
    • 1
    Email author
  • Mohd. Gulman Siddiqui
    • 1
  • Devesh
    • 1
  • Jamshed A. Ansari
    • 1
  1. 1.Department of Electronics and CommunicationUniversity of AllahabadAllahabadIndia

Personalised recommendations