FPGA Realization of Scale-Free CORDIC Algorithm-Based Window Functions

  • Shalini Rai
  • Rajeev SrivastavaEmail author
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 524)


Filtering is an immense process in spectral analysis of signals. In designing of filters, window functions are usually used. In this paper, we present the variety of window functions based on the scale-free COordinate Rotation DIgital Computer (CORDIC) algorithm for the target angle which covers the complete coordinate space. To overcome the problem of more occupied area and speed, we present a study of a different design that is scale-free CORDIC algorithm-based window function architectures. The current paper presents the simulation and synthesis results of two designs which are coded in very high speed integrated circuit hardware description language (VHDL). The Xilinx 13.1 software is used for the simulation and synthesis of coded design, and also these designs are mapped into Virtex-5(XC5VLX20T-FF323) field-programmable gate array (FPGA) device.


Window functions Field-programmable gate array (FPGA) Scale-free CORDIC processor 


  1. 1.
    Parhi, K. K. (1999). VLSI digital signal processing systems. Wiley.Google Scholar
  2. 2.
    Ray, K. C., & Dhar, A. S. (2006). CORDIC–based unified VLSI architecture for implementing window functions for real time spectral analysis. IEEE Proceedings: Circuits, Devices and Systems, 153(6), 539–544.Google Scholar
  3. 3.
    Ray, K. C., & Dhar, A. S. (2008). High throughput VLSI architecture for Blackman windowing in real spectral analysis. Journal of Computers, 3(5), 54–59.CrossRefGoogle Scholar
  4. 4.
    Vaidyanathan, P. P. (1985). A unified approach to orthogonal digital filters and wave digital filters based on the LBR two- pair extraction. IEEE Transactions on Circuits and Systems I, CAS-32, 673–686.CrossRefGoogle Scholar
  5. 5.
    Banerjee, A., Dhar, A. S., & Banerjee, S. (2001). FPGA realization of a CORDIC based FFT processor for biomedical signal processing. Microprocessors and Micro System, 25(3), 131–142.CrossRefGoogle Scholar
  6. 6.
    Gisuthan, B., & Srikanthan, T. (2000). FLAT CORDIC: A unified architecture for high speed generation of trigonometric and hyperbolic functions. In Proceedings of the 43rd IEEE Midwest Symposium on Circuits and Systems, Lansing MI (pp. 1414–1417).Google Scholar
  7. 7.
    Juang, T. B., Hsiao, S. F., & Tsai, M. Y. (2004). Para-CORDIC: Parallel CORDIC rotation algorithm. IEEE Transactions on Circuits and Systems I, 51(8), 1515–1524.MathSciNetCrossRefGoogle Scholar
  8. 8.
    Lin, C. H., & Wu, A. Y. (2005). Mixed-scaling-rotation-CORDIC (MSR-CORDIC) algorithm and architecture for high-performance vector rotational DSP applications. IEEE Transactions on Circuits and Systems I, 52(11), 2385–2396.CrossRefGoogle Scholar
  9. 9.
    Sumanasen, M. G. B. (2008). A scale factor correction scheme for the CORDIC algorithm. IEEE Transactions on Computers, 57(8), 1148–1152.MathSciNetCrossRefGoogle Scholar
  10. 10.
    Maharatna, K., Troya, A., Banerjee, S., & Grass, E. (2004). Virtually scaling free adaptive CORDIC rotator. IEEE Proceedings Computers and Digital Techniques, 151(6), 448–456.CrossRefGoogle Scholar
  11. 11.
    Maharatna, K., & Banerjee, S. (2005). Modified virtually scaling free adaptive CORDIC rotator algorithm and architecture. IEEE Transactions on Circuits and Systems for Video Technology, 15(11), 1463–1474.CrossRefGoogle Scholar
  12. 12.
    Jaime, F. J., Sanchez, M. A., Hormigo, J., Villalba, J., & Zapata, E. L. (2010). Enhanced scaling free CORDIC. IEEE Transactions on Circuits and Systems Video Technology, 57(7), 1654–1662.MathSciNetGoogle Scholar
  13. 13.
    Volder, J. E. (1959). The CORDIC trigonometric Computing technique. IRE Transactions on Electronic Computers, 8(3), 330–334.CrossRefGoogle Scholar
  14. 14.
    Volder, J. E. (2000). The birth of CORDIC. Journal of VLSI Signal Processing, 25(2), 101–105.CrossRefGoogle Scholar
  15. 15.
    Walther, J. S. (1971). A unified algorithm for elementary functions. In Proceedings of AFIPS Spring Joint Computer Conference (pp. 379–385).Google Scholar
  16. 16.
    Walther, J. S. (2000). The story of unified CORDIC. Journal of VLSI Signal Processing, 25(2), 107–112.MathSciNetCrossRefGoogle Scholar
  17. 17.
    Meher, P. K., Valls, J., Juang, T. B., Sridhara, K., & Maharatna, K. (2009). 50 years of CORDIC algorithms, architectures and applications. IEEE Transactions Circuits and Systems I, 56(9), 1893–1907.MathSciNetCrossRefGoogle Scholar
  18. 18.
    Aggarwal, S., Khare. K. (2012). Redesigned-scale-free CORDIC algorithm based FPGA implementation of window functions to minimize area and latency. International Journal of Reconfigurable Computing, 2012(185784), 1–8.CrossRefGoogle Scholar
  19. 19.
    Aggarwal, S., Meher, P. K., & Khare, K. (2013). Scale-free hyperbolic CORDIC processor and its application to waveform generation. IEEE Transactions on Circuits and System-I Regular Papers, 60(2), 314–326.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics and CommunicationUniversity of AllahabadAllahabadIndia

Personalised recommendations