Advertisement

Design of An Improved Micro-Electro-Mechanical-Systems Switch for RF Communication System

  • Kurmendra
  • Rajesh Kumar
  • Osor Pertin
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 524)

Abstract

This paper presents the design of improved MEMS shunt switch for RF communication applications. The switch was designed to provide a better performance in 10–100 GHz range. The switch was optimized in terms of width of the beam and air gap between the fixed type beam and dielectric layer to improve the isolation, insertion, and return loss. This study concludes that materials with high k-dielectrics and high Young’s modulus are desirable for better performance in high-frequency range. The isolation, insertion, and return loss for the designed switch are obtained as –12 dB, –0.05 dB, and –45 dB, respectively.

Keywords

MEMS RF Switch Insertion Isolation 

Notes

Acknowledgements

This research work has been carried out in MEMS laboratory, Department of ECE, Rajiv Gandhi Central University, Itanagar, India.

References

  1. 1.
    Persano, A., Quaranta, F., Martucci, M. C., Siciliano, P., & Cola, A. (2015). On the electrostatic actuation of capacitive RF MEMS switches on GaAs substrate. Sensors and Actuators A-Physical, 232, 202.CrossRefGoogle Scholar
  2. 2.
    Kenny, T. W. (2013). Experimental validation of topology optimization for RF MEMS capacitive switch design. Journal of Microelectromechanical Systems, 22, 1296.CrossRefGoogle Scholar
  3. 3.
    Rebeiz, G. M. (2003). RF MEMS, Theory Design and Technology. Hoboken, New Jersey: Wiley.Google Scholar
  4. 4.
    Philippine, M. A., Sigmund, O., Rebeiz, G. M., & Kenny, T. W. (2013). Topology optimization of stressed capacitive RF MEMS switches. Journal of Microelectromechanical Systems, 22, 206.CrossRefGoogle Scholar
  5. 5.
    Persano, A., Tazzoli, A., Farinelli, P., Meneghesso, G., Siciliano, P., & Quaranta, F. (2012). K-band capacitive MEMS switches on GaAs substrate: design, fabrication, and reliability. Microelectronics Reliability, 52, 2245.CrossRefGoogle Scholar
  6. 6.
    Lin, C., Hsu, C., & Dai, C. (2015). Fabrication of a micromachined capacitive switch using the CMOS-MEMS technology. Micromachines, 6, 1645.CrossRefGoogle Scholar
  7. 7.
    Angira, M., & Rangra, K. (2015). A low insertion loss, multi-band, fixed central capacitor based RF-MEMS switch. Microsystem Technologies, 21, 2259.CrossRefGoogle Scholar
  8. 8.
    Mishra, B., Panigrahi, R., & Alex, Z. C. (2009). Design of RF MEMS switch with high stability effect at the low actuation voltage. Sensors & Transducers, 111, 58.Google Scholar
  9. 9.
    Badia, M. F., Buitrago, E., & Ionescu, A. M. (2012). RF MEMS shunt capacitive switches using AlN compared to Si3N4 dielectric. Journal of Microelectromechanical Systems, 21, 1229.CrossRefGoogle Scholar
  10. 10.
    Zhu, Y., Han, L., Qin, M., & Huang, Q. (2014). Novel DC-40 GHz MEMS series-shunt switch for high isolation and high power applications. Sensors and Actuators A, 101.CrossRefGoogle Scholar
  11. 11.
    Fernandez-Bolanos, M., Perruisseau-Carrier, J., Dainesi, P., & Ionescu, A. M. (2008). RF MEMS capacitive switch on semi-suspended CPW using low-loss high-resistivity silicon substrate. Microelectronic Engineering, 85, 1039.CrossRefGoogle Scholar
  12. 12.
    Angira, M., & Rangra, K. (2015). Design and investigation of a low insertion loss, broadband, enhanced self and hold down power RF-MEMS switch. Microsystem Technologies, 21, 1173.CrossRefGoogle Scholar
  13. 13.
    Demirel, K., Yazgan, E., Demir, S., & Akinodotn, T. (2015). Cantilever type radiofrequency micromechanical systems shunt capacitive switch design and fabrication. Journal of Micro/Nanolithography, MEMS and MOEMS, 14, 35005.CrossRefGoogle Scholar
  14. 14.
    Koutsoureli, M., et al. (2016). An in depth analysis of pull-up capacitance-voltage characteristic for dielectric charging assessment of MEMS capacitive switches. Microelectronics Reliability. http://dx.doi.org/10.1016/j.microrel.2016.07.027.
  15. 15.
    Larson, L. E., Hackett, R. H., Melendes, M. A., & Lohr, R. F. (1991). Micromachined microwave actuator (MIMAC) technology a new tuning approach for microwave integrated circuits. In Procedings IEEE Microwave and Millimeter-Wave Monolithic Circuits Symposium Digest (pp. 27–30).Google Scholar
  16. 16.
    Yao, J. J., & Chang, M. F. (1995). A surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz. In Proceedings. International Conference on Solid-State Sensors and Actuators Digest (pp. 384–387).Google Scholar
  17. 17.
    Agarwal, S., Kashyap, R., Guha, K., & Baishya, S. (2017). Modeling and analysis of capacitance in consideration of the deformation in RF MEMS shunt switch. Superlattices and Microstructures, 101.Google Scholar
  18. 18.
    Kurmendra, & Kumar, R. (2017). Design analysis, modeling and simulation of novel rectangular cantilever beam for MEMS sensors and energy harvesting applications. International Journal of Information Technology.  https://doi.org/10.1007/s41870-017-0035-6.CrossRefGoogle Scholar
  19. 19.
    Guo, Z., Fu1, P., Liu, D., & Huang, M. (2017). Design and FEM simulation for a novel resonant silicon MEMS gyroscope with temperature compensation function. Microsystem Technologies.  https://doi.org/10.1007/s00542-017-3524-4.CrossRefGoogle Scholar
  20. 20.
    Sravani, K. G., & Rao, K. S. (2017). Analysis of RF MEMS shunt capacitive switch with uniform and non-uniform meanders. Microsystem Technologies.  https://doi.org/10.1007/s00542-017-3507-5.CrossRefGoogle Scholar
  21. 21.
    Coplanar Waveguide Calculator. http://www.microwave101.com/encyclopedia.
  22. 22.
    Li, M., Zhao, J., You, Z., & Zhao, G. (2017). Design and fabrication of a low insertion loss capacitive RF MEMS switch with novel micro-structures for actuation. Solid-State Electronics,127, 32–37.CrossRefGoogle Scholar
  23. 23.
    Guha, K., Kumar, Mi, Parmar, A., & Baishya, S. (2016). Performance analysis of RF MEMS capacitive switch with non uniform meandering technique. Microsystem Technologies, 22, 2633.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Electronics & Communication EngineeringRajiv Gandhi University (A Central University)ItanagarIndia
  2. 2.Department of Electronics & Communication EngineeringNorth Eastern Regional Institute of Science & TechnologyItanagarIndia

Personalised recommendations