Advertisement

Introduction

  • Jiajie GuoEmail author
  • Kok-Meng Lee
Chapter
Part of the Research on Intelligent Manufacturing book series (REINMA)

Abstract

Flexible mechatronics is an electro-mechanical system composed of flexible elements which are subjected to large deformations and capable of transferring forces, torques and energies. They have been widely used in many engineering applications in terms of compliant mechanisms such as snap-fits (S. Genc, R.W. Messler, G.A. Gabriele, Concurrent Eng.-Res. Appl. 10(2), 84–93 (1998)), micro grippers (V. Seidemann, S. Butefisch, S. Buttgenbach, Sens. Actuat. A-Phys. 97-8, 457–461 (2002)) and flexure hinges (B.-J. Yi, G.B. Chung, H.Y. Na, W.K. Kim, I.H. Suh, Robot. Autom. 19(4), 604–612 (2003)). In recent years, flexible or compliant devices have attracted more and more attention to biology related applications, such as flexible electronics, bio inspired robotics and food processing industry, because compliant components exhibit many advantages in dealing with highly deformable biological materials over rigid engineering tools in terms of simple structures and light weights.

References

  1. 1.
    S. Genc, R.W. Messler, G.A. Gabriele, A systematic approach to integral snap-fit attachment design. Concurrent Eng.-Res. Appl. 10(2), 84–93 (1998)Google Scholar
  2. 2.
    V. Seidemann, S. Butefisch, S. Buttgenbach, Fabrication and investigation of in-plane compliant su8 structures for mems and their application to micro valves and micro grippers. Sens. Actuat. A-Phys. 97-8, 457–461 (2002)Google Scholar
  3. 3.
    B.-J. Yi, G.B. Chung, H.Y. Na, W.K. Kim, I.H. Suh, Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges. IEEE Trans. Robot. Autom. 19(4), 604–612 (2003)Google Scholar
  4. 4.
    K.-M. Lee, J. Guo, Biological joint kinematic model for flexible deboning automation, presented at the International Symposium on Flexible Automation (ISFA) (Atlanta, GA, USA, 2008)Google Scholar
  5. 5.
    J. Guo, K.-M. Lee, Effects of musculoskeleton model on flexible deboning automation, presented at the International Symposium on Flexible Automation (ISFA) (Atlanta, GA, USA, 2008)Google Scholar
  6. 6.
    L.L. Howell, Compliant Mechanisms, 1st edn. (Wiley, New York, 2001)Google Scholar
  7. 7.
    J.M. Gere, S.P. Timoshenko, Mechanics of Materials, 4th edn. (PWS, Boston, 1997)Google Scholar
  8. 8.
    S.P. Timoshenko, On the transverse vibrations of bars of uniform cross-section. Philos. Mag. 43(253), 125–131 (1922)Google Scholar
  9. 9.
    R. Frisch-Fay, Flexible Bars (Butterworths, Washington, D.C., 1962)zbMATHGoogle Scholar
  10. 10.
    P.F. Pai, A.H. Nayfeh, A fully nonlinear theory of curved and twisted composite rotor blades accounting for warpings and three-dimensional stress effects. Int. J. Solids Struct. 31(9), 1309–1340 (1994)Google Scholar
  11. 11.
    P.F. Pai, A.N. Palazotto, Large-deformation analysis of flexible beams. Int. J. Solids Struct. 33(9), 1335–1353 (1996)CrossRefzbMATHGoogle Scholar
  12. 12.
    R.A. Laskin, P.W. Likins, R.W. Longman, Dynamical equations of a free-free beam subject to large overall motions. J. Astronaut. Sci. 31(4), 507–527 (1983)Google Scholar
  13. 13.
    T.R. Kane, R.R. Ryan, A.K. Banerjee, Dynamics of a cantilever beam attached to a moving base. J. Guid. Control Dynam. 10(2), 139–151 (1987)Google Scholar
  14. 14.
    J.C. Simo, L. Vuquoc, On the dynamics of flexible beams under large overall motions—the plane case.1. J. Appl. Mech. Trans. ASME. 53(4), 849–854 (1986)Google Scholar
  15. 15.
    J.C. Simo, L. Vuquoc, On the dynamics of flexible beams under large overall motions—the plane case.2. J. Appl. Mech. Trans. ASME, 53(4), 855–863 (1986)Google Scholar
  16. 16.
    A.A. Shabana, R.Y. Yakoub, Three dimensional absolute nodal coordinate formulation for beam elements: theory. J. Mech. Des. 123(4), 606–613 (2001)Google Scholar
  17. 17.
    D.E. Stewart, Rigid-body dynamics with friction and impact, Siam Rev. 42(1), 3–39 (2000)Google Scholar
  18. 18.
    D.E. Stewart, Convolution complementarity problems with application to impact problems. IMA J. Appl. Math. 71(1), 92–119 (2006)Google Scholar
  19. 19.
    P. Song, P. Kraus, V. Kumar, P. Dupont, Analysis of rigid-body dynamic models for simulation of systems with frictional contacts. J. Appl. Mech.-Trans. ASME 68(1), 118–128 (2001)Google Scholar
  20. 20.
    S. Adly, D. Goeleven, A stability theory for second-order nonsmooth dynamical systems with application to friction problems. J. Math. Pure. Appl. 83(1), 17–51 (2004)Google Scholar
  21. 21.
    N. Kikuchi, J.T. Oden, Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods (SIAM, Philadelphia, 1988)CrossRefzbMATHGoogle Scholar
  22. 22.
    T. A. Laursen, J.C. Simo, A continuum-based finite-element formulation for the implicit solution of multibody, large-deformation frictional contact problems. Int. J. Numer. Methods Eng. 36(20), 3451–3485 (1993)Google Scholar
  23. 23.
    R. Kelkar, V.M. Wang, E.L. Flatow, P.M. Newton, G.A. Ateshian, L.U. Bigliani, R.J. Pawluk, C.C. Mow, Glenohumeral mechanics: a study of articular geometry, contact, and kinematics. J. Shoulder Elbow Surg. 10(1), 73–84 (2001)Google Scholar
  24. 24.
    H. Iwaki, V. Pinskerova, M.A.R. Freeman, Tibiofemoral movement 1: the shapes and relative movements of the femur and tibia in the unloaded cadaver knee. J. Bone Joint Surg. 82B(8), 1189–1195 (2000)Google Scholar
  25. 25.
    B.D. Yang, C.H. Menq, Characterization of 3d contact kinematics and prediction of resonant response of structures having 3d frictional constraint. J. Sound Vib 217(5), 909–925 (1998)CrossRefGoogle Scholar
  26. 26.
    D.J. Montana, The kinematics of contact and grasp. 7(3), 17–32 (1988)Google Scholar
  27. 27.
    Joints and corresponding models. Available: http://ovrt.nist.gov/projects/vrml/h-anim/jointInfo.html
  28. 28.
    R. Huiskes, J. Kremers, A. Delange, H.J. Woltring, G. Selvik, T.J.G. Vanrens, Analytical stereophotogrammetric determination of 3-dimensional knee-joint geometry. 18(8), 559–570 (1985)Google Scholar
  29. 29.
    N. Nuno, A.M. Ahmed, Three-dimensional morphometry of the femoral condyles. 18(10), 924–932 (2003)Google Scholar
  30. 30.
    G. Colombo, M. Joerg, R. Schreier, V. Dietz, Treadmill training of paraplegic patients using a robotic orthosis. 37(6), 693–700 (2000)Google Scholar
  31. 31.
    K. Kiguchi, K. Iwami, M. Yasuda, K. Watanabe, T. Fukuda, An exoskeletal robot for human shoulder joint motion assist. IEEE/ASME Trans. Mechatron. 8(1), 125–135 (2003)CrossRefGoogle Scholar
  32. 32.
    H. Kawamoto, Y. Sankai, Power assist method based on phase sequence and muscle force condition for hal. Adv. Rob. 19(7), 717–734 (2005)CrossRefGoogle Scholar
  33. 33.
    D.P. Ferris, J.M. Czerniecki, B. Hannaford, An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 21(2), 189–197 (2005)CrossRefGoogle Scholar
  34. 34.
    A.B. Zoss, H. Kazerooni, A. Chu, Biomechanical design of the berkeley lower extremity exoskeleton (bleex). IEEE-ASME Trans. Mechatron. 11(2), 128–138 (2006)CrossRefGoogle Scholar
  35. 35.
    K.E. Gordon, D.P. Ferris, Learning to walk with a robotic ankle exoskeleton. J. Biomech. 40(12), 2636–2644 (2007)CrossRefGoogle Scholar
  36. 36.
    N.G. Tsagarakis, D.G. Caldwell, Development and control of a ‘soft-actuated’ exoskeleton for use in physiotherapy and training. Autom. Rob. 15(1), 21–33 (2003)Google Scholar
  37. 37.
    J.F. Veneman, R. Ekkelenkamp, R. Kruidhof, F.C.T. van der Helm, H. van der Kooij, A series elastic- and bowden-cable-based actuation system for use as torque actuator in exoskeleton-type robots. Int. J. Rob. Res. 25(3), 261–281 (2006)CrossRefGoogle Scholar
  38. 38.
    K. Low, Initial experiments on a leg mechanism with a flexible geared joint and footpad. Adv. Rob. 19(4), 373–399 (2005)CrossRefGoogle Scholar
  39. 39.
    M.G. Pandy, Computer modeling and simulation of human movement. Annu. Rev. Biomed. Eng. 3(1), 245–273 (2001)CrossRefGoogle Scholar
  40. 40.
    A. Bull, A. Amis, Knee joint motion: description and measurement. Proc. Inst. Mech. Eng., Part H: J. Eng. Med. 212(5), 357-372 (1998)Google Scholar
  41. 41.
    M. Lafortune, C. Lambert, M. Lake, Skin marker displacement at the knee joint. J. Biomech. 26(3), 299 (1993)Google Scholar
  42. 42.
    T.-W. Lu, J. O’connor, Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J. Biomech. 32(2), 129–134 (1999)CrossRefGoogle Scholar
  43. 43.
    C. Peterfy, J. Li, S. Zaim, J. Duryea, J. Lynch, Y. Miaux, W. Yu, H. Genant, Comparison of fixed-flexion positioning with fluoroscopic semi-flexed positioning for quantifying radiographic joint-space width in the knee: test-retest reproducibility. Skeletal Radiol. 32(3), 128–132 (2003)CrossRefGoogle Scholar
  44. 44.
    G. Li, S.K. Van de Velde, J.T. Bingham, Validation of a non-invasive fluoroscopic imaging technique for the measurement of dynamic knee joint motion. J. Biomech. 41(7), 1616–1622 (2008)CrossRefGoogle Scholar
  45. 45.
    S. Sathasivam, P.S. Walker, A computer model with surface friction for the prediction of total knee kinematics. J. Biomech. 30(2), 177–184 (1997)CrossRefGoogle Scholar
  46. 46.
    T.L.H. Donahue, M. Hull, M.M. Rashid, C.R. Jacobs, A finite element model of the human knee joint for the study of tibio-femoral contact. J. Biomech. Eng. 124(3), 273–280 (2002)CrossRefGoogle Scholar
  47. 47.
    P.C. Liacouras, J.S. Wayne, Computational modeling to predict mechanical function of joints: application to the lower leg with simulation of two cadaver studies. J. Biomech. Eng. 129(6), 811–817 (2007)CrossRefGoogle Scholar
  48. 48.
    H.B. Keller, Numerical Methods for Two-Point Boundary-Value Problems. (Waltham, Massachusetts, Blaisdell, 1968)Google Scholar
  49. 49.
    J. Stoer, R. Bulirsch, Introduction to Numerical Analysis (Springer-Verlag, New York, 1993)CrossRefzbMATHGoogle Scholar
  50. 50.
    R. Holsapple, R. Venkataraman, D. Doman, A modified simple shooting method for solving two-point boundary-value problems. in IEEE Proceedings of Aerospace Conference, vol. 6 (2003), pp. 2783-2790Google Scholar
  51. 51.
    C.-C. Lan, K.-M. Lee, Generalized shooting method for analyzing compliant mechanisms with curved members. J. Mech. Des. 128(4), 765–775 (2006)CrossRefGoogle Scholar
  52. 52.
    C.S. Liu, The lie-group shooting method for nonlinear two-point boundary value problems exhibiting multiple solutions. CMES-Comp. Model. Eng. Sci. 13(2), 149–163 (2006)Google Scholar
  53. 53.
    C.M. Wang, S. Kitipornchai, Shooting optimization technique for large deflection analysis of structural members. Eng. Struct. 14(4), 231–240 (1992)Google Scholar
  54. 54.
    S.R. Li, Y.H. Zhou, Shooting method for non-linear vibration and thermal buckling of heated orthotropic circular plates. J. Sound Vib. 248(2), 379–386 (2001)Google Scholar
  55. 55.
    X. Yin, K.-M. Lee, C.-C. Lan, Computational models for predicting the deflected shape of a non-uniform, flexible finger. in Proceedings of IEEE International Conference on Robotics and Automation (ICRA), vol. 3 (2004), pp. 2963–2968Google Scholar
  56. 56.
    C.-C. Lan, K.-M. Lee, J.-H. Liou, Dynamics of highly elastic mechanisms using the generalized multiple shooting method: simulations and experiments. Mech. Mach. Theory, 44(12), 2164–2178 (2009)Google Scholar
  57. 57.
    J. R. Chang, C.S. Liu,C.W. Chang, A new shooting method for quasi-boundary regularization of backward heat conduction problems. Int. J. Heat Mass Transf. 50(11–12), 2325–2332 (2007)Google Scholar
  58. 58.
    C.S. Liu, Identifying time-dependent damping and stiffness functions by a simple and yet accurate method. J. Sound Vib. 318(1–2), 148–165 (2008)Google Scholar
  59. 59.
    J.P. Lynch, K.J. Loh, A summary review of wireless sensors and sensor networks for structural health monitoring. Shock Vib. Dig. 38, 91–128 (2006)Google Scholar
  60. 60.
    I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, A survey on sensor networks. IEEE Commun. Mag. 40(8), 102–114 (2002)Google Scholar
  61. 61.
    K.-M. Lee, Y. Wang, D. Zhu, J. Guo, X. Yi, Flexure-based mechatronic mobile sensors for structure damage detection, presented at the 7th International Workshop on Structural Health Monitoring (Stanford CA, USA, 2009)Google Scholar
  62. 62.
    J. Guo, K.-M. Lee, D. Zhu, Y. Wang, A flexonic magnetic car for ferro-structural health monitoring, in the Proceedings of the ASME Dynamics Systems and Control Conference (DSCC) (Hollywood, CA, 2009), pp. 481–487Google Scholar
  63. 63.
    D. Zhu, X. Yi, Y. Wang, K.-M. Lee, J. Guo, A mobile sensing system for structural health monitoring: design and validation. Smart Mater. Struct.​ 19(5), 055011 (2010)Google Scholar
  64. 64.
    P.G. Backes, Y. Bar-Cohen, B. Joffe, The multifunction automated crawling system (MACS), in Proceedings of IEEE International Conference on Robotics and Automation, vol. 1 (1997), pp. 335–340Google Scholar
  65. 65.
    J.Z. Shang, T. Sattar, S. Chen, B. Bridge, Design of a climbing robot for inspecting aircraft wings and fuselage. Int. J. Ind. Rob. 34(6), 495–502 (2007)CrossRefGoogle Scholar
  66. 66.
    J.Z. Xiao, W. Morris, N. Chakravarthy, A. Calle, City-climber: a new generation of mobile robot with wall-climbing capability, in Proceedings of SPIE​ Unmanned systems technology VIII, PTS 1 and 2. vol. 6230, ed. (SPIE-Int Soc Optical Engineering, Bellingham, 2006)Google Scholar
  67. 67.
    Y. Ota, K. Yoneda, T. Tamaki, S. Hirose, A walking and wheeled hybrid locomotion with twin-frame structure robot, presented at ​IEEE/RSJ International Conference on Intelligent Robots and Systems (2002)Google Scholar
  68. 68.
    B. Esser, J. Miller, D. Huston, P. Bourn, Robotic systems for homeland security, in Proceedings of SPIE Nondestructive Detection and Measurement for Homeland Security II, vol. 5395 (San Diego, CA, 2004), pp. 134–142Google Scholar
  69. 69.
    T. Yukawa, M. Suzuki, Y. Satoh, H. Okano, Design of magnetic wheels in pipe inspection robot, presented at  IEEE International Conference on  Systems, Man and Cybernetics (SMC) (2006)Google Scholar
  70. 70.
    F. Tache, W. Fischer, G. Caprari, R. Siegwart, R. Moser, F. Mondada, Magnebike: a magnetic wheeled robot with high mobility for inspecting complex-shaped structures. J. Field Rob. 26(5), 453–476 (2009)CrossRefGoogle Scholar
  71. 71.
    S.C. Han, J. Kim, H.C. Yi, A novel design of permanent magnet wheel with induction pin for mobile robot. Int. J. Precision Eng. Manuf. 10(4), 143–146 (2009)CrossRefGoogle Scholar
  72. 72.
    H. Yaguchi, N. Sato, Globular magnetic actuator capable of free movement in a complex pipe. IEEE Trans. Magn. 46(6), 1350–1355 (2010)CrossRefGoogle Scholar
  73. 73.
    H. Wei, Y. Chen, J. Tan, T. Wang, Sambot: a self-assembly modular robot system. IEEE/ASME Trans. Mechatron. 16(4), 745–757 (2011)CrossRefGoogle Scholar
  74. 74.
    S. Liu, D. Sun, C. Zhu, Coordinated motion planning for multiple mobile robots along designed paths with formation requirement. IEEE/ASME Trans. Mechatron. 16(6), 1021–1031 (2011)CrossRefGoogle Scholar
  75. 75.
    H. Mehrjerdi, M. Saad, J. Ghommam, Hierarchical fuzzy cooperative control and path following for a team of mobile robots. IEEE/ASME Trans. Mechatron. 16(5), 907–917 (2011)CrossRefGoogle Scholar
  76. 76.
    S. Ahmad, Control of cooperative multiple flexible joint robots. IEEE Trans. Syst., Man, Cybern.​ 23(3), 833–839 (1993)Google Scholar
  77. 77.
    M.A. Arteaga, B. Siciliano, On tracking control of flexible robot arms. IEEE Trans. Autom. Control 45(3), 520–527 (2000)CrossRefMathSciNetzbMATHGoogle Scholar
  78. 78.
    M. Filipovic, M. Vukobratovic, Modeling of flexible robotic systems, presented at International Conference on Computer as a Tool (EUROCON), vol. 2 (2005)​, pp. 1196–1199Google Scholar
  79. 79.
    J.G. Garcia, A. Robertsson, J.G. Ortega, R. Johansson, Sensor fusion for compliant robot motion control. IEEE Trans. Rob. 24(2), 430–441 (2008)CrossRefGoogle Scholar
  80. 80.
    J. Guo, K.-M. Lee, D. Zhu, X. Yi, Y. Wang, Large-deformation analysis and experimental validation of a flexure-based mobile sensor node. IEEE-ASME Trans. Mechatron. 17(4), 606–616 (2012)CrossRefGoogle Scholar
  81. 81.
    C.-C. Lan, C.-M. Lin, C.-H. Fan, A self-sensing microgripper module with wide handling ranges. IEEE/ASME Trans. Mechatron. 16(1), 141–150 (2011)CrossRefGoogle Scholar
  82. 82.
    M. Filipovic, M. Vukobratovic, Expansion of source equation of elastic line. Robotica 26(6), 739–751 (2008)CrossRefGoogle Scholar
  83. 83.
    U.-X. Tan, W.T. Latt, C.Y. Shee, W.T. Ang, A low-cost flexure-based handheld mechanism for micromanipulation. IEEE/ASME Trans. Mechatron. 16(4), 773–778 (2011)CrossRefGoogle Scholar
  84. 84.
    H. Xie, S. Régnier, Development of a flexible robotic system for multiscale applications of micro/nanoscale manipulation and assembly. IEEE/ASME Trans. Mechatron. 16(2), 266 (2011)CrossRefGoogle Scholar
  85. 85.
    S.K. Dwivedy, P. Eberhard, Dynamic analysis of flexible manipulators, a literature review. Mech. Mach. Theory 41(7), 749–777 (2006)CrossRefMathSciNetzbMATHGoogle Scholar
  86. 86.
    G.J. Tuijthof, J.L. Herder, Design, actuation and control of an anthropomorphic robot arm. Mech. Mach. Theory 35(7), 945–962 (2000)CrossRefzbMATHGoogle Scholar
  87. 87.
    L. Gaudiller, F. Matichard, A nonlinear method for improving the active control efficiency of smart structures subjected to rigid body motions. IEEE/ASME Trans. Mechatron. 12(5), 542–548 (2007)CrossRefGoogle Scholar
  88. 88.
    C. La-orpacharapan, L.Y. Pao, Fast and robust control of systems with multiple flexible modes. IEEE/ASME Trans. Mechatron. 10(5), 521–534 (2005)CrossRefGoogle Scholar
  89. 89.
    R. Caracciolo, A. Trevisani, Simultaneous rigid-body motion and vibration control of a flexible four-bar linkage. Mech. Mach. Theory 36(2), 221–243 (2001)CrossRefzbMATHGoogle Scholar
  90. 90.
    A. Trevisani, M.E. Valcher, An energy-based adaptive control design technique for multibody-mechanisms with flexible links. IEEE/ASME Trans. Mechatron. 10(5), 571–580 (2005)CrossRefGoogle Scholar
  91. 91.
    P.F. Pai, A.H. Nayfeh, A fully nonlinear-theory of curved and twisted composite rotor blades accounting for warpings and 3-dimensional stress effects. Int. J. Solids Struct. 31(9), 1309–1340 (1994)CrossRefzbMATHGoogle Scholar
  92. 92.
    J. Goodier, Torsional and flexural buckling of bars of thin-walled open section under compressive and bending loads. J. Appl. Mech. ASME. 9(3), 103–107 (1942)Google Scholar
  93. 93.
    F. Jarrar, M. Hamdan, Nonlinear vibrations and buckling of a flexible rotating beam: A prescribed torque approach. Mech. Mach. Theory 42(8), 919–939 (2007)CrossRefzbMATHGoogle Scholar
  94. 94.
    J.L. Batoz, G. Dhatt, Incremental displacement algorithms for nonlinear problems. Int. J. Numer. Methods Eng. 14(8), 1262–1267 (1979)CrossRefMathSciNetzbMATHGoogle Scholar
  95. 95.
    P.K. Jamwal, S.Q. Xie, S. Hussain, J.G. Parsons, An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans. Mechatron. 19(1), 64–75 (2014)CrossRefGoogle Scholar
  96. 96.
    A. Chiri, N. Vitiello, F. Giovacchini, S. Roccella, F. Vecchi, M.C. Carrozza, Mechatronic design and characterization of the index finger module of a hand exoskeleton for post-stroke rehabilitation. IEEE/ASME Trans. Mechatron. 17(5), 884–894 (2012)CrossRefGoogle Scholar
  97. 97.
    Y. Mao, S.K. Agrawal, Design of a cable-driven arm exoskeleton (CAREX) for neural rehabilitation. IEEE Trans. Rob. 28(4), 922–931 (2012)CrossRefGoogle Scholar
  98. 98.
    S.K. Banala, S.K. Agrawal, S.H. Kim, J.P. Scholz, Novel gait adaptation and neuromotor training results using an active leg exoskeleton. IEEE/ASME Trans. Mechatron. 15(2), 216–225 (2010)CrossRefGoogle Scholar
  99. 99.
    A.M. Dollar, H. Herr, Lower extremity exoskeletons and active orthoses: Challenges and state-of-the-art. IEEE Trans. Rob. 24(1), 144–158 (2008)CrossRefGoogle Scholar
  100. 100.
    J. O’connor, T. Shercliff, E. Biden, J. Goodfellow, The geometry of the knee in the sagittal plane. Proc. Inst. Mech. Eng. H, 203(4), 223–233 (1989)Google Scholar
  101. 101.
    J. Wismans, F. Veldpaus, J. Janssen, A. Huson, P. Struben, A three-dimensional mathematical model of the knee-joint. J. Biomech. 13(8), 681–685 (1980)CrossRefGoogle Scholar
  102. 102.
    G. Wu, P.R. Cavanagh, Isb recommendations for standardization in the reporting of kinematic data. J. Biomech. 28(10), 1257–1261 (1995)CrossRefGoogle Scholar
  103. 103.
    A.H. Stienen, E.E. Hekman, F.C. Van Der Helm, H. Van Der Kooij, Self-aligning exoskeleton axes through decoupling of joint rotations and translations. IEEE Trans. Rob. 25(3), 628–633 (2009)CrossRefGoogle Scholar
  104. 104.
    A. Schiele, F.C. Van Der Helm, Kinematic design to improve ergonomics in human machine interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 14(4), 456–469 (2006)CrossRefGoogle Scholar
  105. 105.
    A. Schiele, An explicit model to predict and interpret constraint force creation in phri with exoskeletons, in Proceedings of IEEE International Conference Robotics Automation (ICRA) (Pasadena, CA, USA, 2008), pp. 1324–1330Google Scholar
  106. 106.
    A. Schiele, Ergonomics of exoskeletons: Objective performance metrics, in Proceedings of 3rd Joint European Conference Symposium on Haptic Interface for Virtual Environment Teleoperator and System (Salt Lake City, USA, 2009), pp. 103–108Google Scholar
  107. 107.
    N. Jarrasse, G. Morel, Connecting a human limb to an exoskeleton. IEEE Trans. Rob. 28(3), 697–709 (2012)CrossRefGoogle Scholar
  108. 108.
    L.E. Amigo, A. Casals, J. Amat, Design of a 3-dof joint system with dynamic servo-adaptation in orthotic applications, in Proceedings of IEEE International Conference on Robotics Automation (ICRA) (Shanghai, China, 2011), pp. 3700–3705Google Scholar
  109. 109.
    D. Cai, P. Bidaud, V. Hayward, F. Gosselin, F. Fontenay Aux Roses, Design of self-adjusting orthoses for rehabilitation, in Proceedings of International Conference on Robotics and Applications vol. 74 (Cambridge, MA, USA, 2009), pp. 215–223Google Scholar
  110. 110.
    K.-M. Lee, J. Guo, Kinematic and dynamic analysis of an anatomically based knee joint. J. Biomech. 43(7), 1231–1236 (2010)CrossRefGoogle Scholar
  111. 111.
    V.V. Patel, K. Hall, M. Ries, J. Lotz, E. Ozhinsky, C. Lindsey, Y. Lu, S. Majumdar, A three-dimensional mri analysis of knee kinematics. J. Orthop Res. 22(2), 283–292 (2004)CrossRefGoogle Scholar
  112. 112.
    D.-H. Wang, J. Guo, K.-M. Lee, C.-J. Yang, H. Yu, An adaptive knee joint exoskeleton based on biological geometries, in Proceedings of IEEE International Conference on Robotics Automation (Shanghai, China, 2011), pp. 1386–1391Google Scholar
  113. 113.
    D. Wang, K.-M. Lee, J. Guo, C.-J. Yang, Adaptive knee joint exoskeleton based on biological geometries. IEEE-ASME Trans. Mechatron. 19(4), 1268–1278 (2014)CrossRefGoogle Scholar
  114. 114.
    K. Ma, R. Goetz, S.K. Srivasta, Modeling of residual stress and machining distortion in aerospace components (preprint). Enterp. Soc. 9(3), 513–516 (2010)Google Scholar
  115. 115.
    E. Diez, H. Perez, J. Marquez, A. Vizan, Feasibility study of in-process compensation of deformations in flexible milling. Int. J. Mach. Tools Manuf. 94, 1–14 (2015)CrossRefGoogle Scholar
  116. 116.
    M.N. Helfrick, C. Niezrecki, P. Avitabile, T. Schmidt, 3d digital image correlation methods for full-field vibration measurement. Mech. Syst. Signal Process. 25(3), 917–927 (2011)CrossRefGoogle Scholar
  117. 117.
    D.J. Cappelleri, G. Piazza, V. Kumar, A two dimensional vision-based force sensor for microrobotic applications. Sens. Actuat. A-Phys. 171(2), 340–351 (2011)CrossRefGoogle Scholar
  118. 118.
    M.Y. Tsai, C.W. Ting, C.Y. Huang, Y.S. Lai, Determination of residual strains of the emc in pbga during manufacturing and ir solder reflow processes. Microelectron. Reliab. 51(3), 642–648 (2011)CrossRefGoogle Scholar
  119. 119.
    I. Hanhan, E. Durnberg, G. Freihofer, P. Akin, S. Raghavan, Portable piezospectroscopy system: non-contact in-situ stress sensing through high resolution photo-luminescent mapping. J. Instrum. 9, P11005 (2014)CrossRefGoogle Scholar
  120. 120.
    Y. Wang, Y. Li, T. Bock, J.P. Lynch, J. Mattila, Introduction to the focused section on intelligent robotics for civil infrastructure. Int. J. Intell. Rob. Appl. 1(3), 239–242 (2017)CrossRefGoogle Scholar
  121. 121.
    B. Li, K. Ushiroda, L. Yang, Q. Song, J. Xiao, Wall-climbing robot for non-destructive evaluation using impact-echo and metric learning svm. Int. J. Intell. Rob. Appl. 1(3), 255–270 (2017)CrossRefGoogle Scholar
  122. 122.
    M. Chierichetti, M. Ruzzene, Dynamic displacement field reconstruction through a limited set of measurements: application to plates. J. Sound Vib. 331(21), 4713–4728 (2012)CrossRefGoogle Scholar
  123. 123.
    R. Izamshah, J.P.T. Mo, S. Ding, Hybrid deflection prediction on machining thin-wall monolithic aerospace components. Proc. Inst. Mech. Eng. Part B-J. Eng. Manuf. 226(B4), 592–605 (2012)Google Scholar
  124. 124.
    A. Derkevorkian, S.F. Masri, J. Alvarenga, H. Boussalis, J. Bakalyar, W.L. Richards, Strain-based deformation shape-estimation algorithm for control and monitoring applications. AIAA J. 51(9), 2231–2240 (2013)CrossRefGoogle Scholar
  125. 125.
    P. Cerracchio, M. Gherlone, A. Tessler, Real-time displacement monitoring of a composite stiffened panel subjected to mechanical and thermal loads. Meccanica 50(10), 2487–2496 (2015)CrossRefGoogle Scholar
  126. 126.
    A. Tessler, J.L. Spangler, A least-squares variational method for full-field reconstruction of elastic deformations in shear-deformable plates and shells. Comput. Methods Appl Mech. Eng. 194(2), 327–339 (2005)CrossRefzbMATHGoogle Scholar
  127. 127.
    R. Glaser, V. Caccese, M. Shahinpoor, Shape monitoring of a beam structure from measured strain or curvature. Exp. Mech. 52(6), 591–606 (2012)CrossRefGoogle Scholar
  128. 128.
    L.U. Odhner, A.M. Dollar, The smooth curvature model: An efficient representation of euler-bernoulli flexures as robot joints. IEEE Trans. Rob. 28(4), 761–772 (2012)CrossRefGoogle Scholar
  129. 129.
    R.J. Roesthuis, M. Kemp, J.J. van den Dobbelsteen, S. Misra, Three-dimensional needle shape reconstruction using an array of fiber bragg grating sensors. IEEE-ASME Trans. Mechatron. 19(4), 1115–1126 (2014)CrossRefGoogle Scholar
  130. 130.
    S. Laflamme, H.S. Saleem, B.K. Vasan, R.L. Geiger, D. Chen, M.R. Kessler, K. Rajan, Soft elastomeric capacitor network for strain sensing over large surfaces. IEEE-ASME Trans. Mechatron. 18(6), 1647–1654 (2013)CrossRefGoogle Scholar
  131. 131.
    J.-W. Park, S.-H. Sim, H.-J. Jung, Displacement estimation using multimetric data fusion. IEEE-ASME Trans. Mechatron. 18(6), 1675–1682 (2013)CrossRefGoogle Scholar
  132. 132.
    J. Baqersad, C. Niezrecki, P. Avitabile, Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3d point tracking and a modal expansion technique. J. Sound Vib. 352, 16–29 (2015)CrossRefGoogle Scholar
  133. 133.
    P. Cerracchio, M. Gherlone, M. Di Sciuva, A. Tessler, A novel approach for displacement and stress monitoring of sandwich structures based on the inverse finite element method. Compos. Struct. 127, 69–76 (2015)CrossRefGoogle Scholar
  134. 134.
    Y. Zhao, Y. Zhao, C. Wang, S. Liang, R. Cheng, Y. Qin, P. Wang, Y. Li, X. Li, T. Hu, Design and development of a cutting force sensor based on semi-conductive strain gauge. Sens. Actuat. A-Phys. 237, 119–127 (2016)CrossRefGoogle Scholar
  135. 135.
    J. Guo, K. Lee, W. Liu, B. Wang, Design criteria based on modal analysis for vibration sensing of thin-wall plate machining. IEEE-ASME Trans. Mechatron. 20(3), 1406–1417 (2015)CrossRefGoogle Scholar
  136. 136.
    A.A.D. Sarhan, A. Matsubara, Investigation about the characterization of machine tool spindle stiffness for intelligent cnc end milling. Rob. Comput. Integr. Manuf. 34, 133–139 (2015)CrossRefGoogle Scholar
  137. 137.
    J.S. Bae, M.K. Kwak, D.J. Inman, Vibration suppression of a cantilever beam using eddy current damper. J. Sound Vib. 284(3–5), 805–824 (2005)CrossRefGoogle Scholar
  138. 138.
    J. Laborenz, M. Krack, L. Panning, J. Wallaschek, M. Denk, P.-A. Masserey, Eddy current damper for turbine blading: electromagnetic finite element analysis and measurement results. J. Eng. Gas Turbines Power 134(4), 2012Google Scholar
  139. 139.
    J. Guo, R. Liu, K.-M. Lee, Displacement field sensing and reconstruction for vibration of a thin-wall plate, in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (Busan, Korea, 2015), pp. 1350–1355Google Scholar
  140. 140.
    J. Guo, R. Liu, K.-M. Lee, Dynamic modeling and analysis for thin-wall plate machining, in Proceedings of the ASME Dynamic Systems and Control Conference, vol. 3 (Columbus, Ohio, USA, 2015)Google Scholar
  141. 141.
    W. Daley, T. He, K.-M. Lee, M. Sandlin, Modeling of the natural product deboning process using biological (1999), pp. 49–54Google Scholar
  142. 142.
    M.C. Sandlin, Model-Based Vision-Guided Automated Cutting of Natural Products (Master, Mechanical Engineering, Georgia Institute of Technology, Atlanta, 1998)Google Scholar
  143. 143.
    T. He, Effects of Rotor Configurations on the Characteristic Torque of a Variable-Reluctance Spherical Motor (Ph.D., Mechanical Engineering, Georgia Institute of Technology, Atlanta, 2000)Google Scholar
  144. 144.
    K.-M. Lee, C.-K. Kwan, Design concept development of a spherical stepper for robotic. 7(1), 175–181 (1991)Google Scholar
  145. 145.
    M.R. Claffee, The Effects of Wing Manipulation on Automated Cutting of Biological Materials (Master, Mechanical Engineering, Georgia Institute of Technology, Atlanta, 2006)Google Scholar
  146. 146.
    K.-M. Lee, On the development of a compliant grasping mechanism for online handling of live objects. I. Analytical model, in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (1999), pp. 354–359Google Scholar
  147. 147.
    K.-M. Lee, A.B. Webster, J. Joni, X. Yin, R. Carey, M.P. Lacy, R. Gogate, On the development of a compliant grasping mechanism for online handling of live objects. II. Design and experimental investigation, in Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), (1999), pp. 360–365Google Scholar
  148. 148.
    Q. Li, K.-M. Lee, An adaptive meshless method for analyzing large mechanical deformation and contacts. J. Appl. Mech. Trans. ASME. 75(4), 041014 (2008)Google Scholar

Copyright information

© Huazhong University of Science and Technology Press, Wuhan and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.School of Mechanical Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.The George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations