Determination of Room Temperature Thermal Conductivity of Thorium—Uranium Alloys

  • Santanu DasEmail author
  • Santu Kaity
  • R. Kumar
  • Joydipta Banerjee
  • S. B. Roy
  • G. P. Chaudhari
  • B. S. S. Daniel
Conference paper


Room temperature thermal conductivity values of selected composition of Th-U alloys were experimentally measured employing Transient Plane Source (TPS) technique using slab sample geometry. Experimental values were fitted in an empirical model relating room temperature thermal conductivity with alloy composition. The trend has been explained based on actual microstructural features. The room temperature thermal conductivity values of Th-U alloys were found to be superior to that of other prevailing metallic and ceramic fuel candidates.


Thermal conductivity Thorium–uranium Alloy Microstructures TPS 



Authors sincerely acknowledge the help received from Shri Suman Neogy, MSD, BARC for TEM; Shri Dulal Mandal, Shri G. D. Vaidya, Shri N. K. Vernekar, Shri D. B. S. Bhandari, UED, BARC for their assistance in conducting experiments.


  1. 1.
  2. 2.
    United Nations Development Programme, Human development report (1999)Google Scholar
  3. 3.
    A.J. Lane, Economic incentive for thorium reactor development, in Thorium Utilization in Power Reactors (Vienna, 1965)Google Scholar
  4. 4.
    IAEA, Thorium Fuel Cycle-Potential Benefits and Challenges, TECDOC 1450 (IAEA, 2005)Google Scholar
  5. 5.
    G.L. Copeland, Evaluation of Thorium-Uranium Alloys for the Unclad-Metal Breeder Reactor, ORNL-4557 (USAEC, 1970)Google Scholar
  6. 6.
    G.G. Bentle, A physical metallurgical study of thorium rich thorium-uranium alloys, NAA-SR-2069, in Evaluation of Thorium Uranium-Alloys for Unclad-Metal Breeder Reactor, ed. by G.L. Copeland (ORNL, 1970, USAEC, 1958)Google Scholar
  7. 7.
    G.H. Bannister, R.C. Burnett, J.R. Murray, Ageing and hot hardness characteristics of certain thorium alloys. J. Nucl. Mater. 2(1), 51 (1960)CrossRefGoogle Scholar
  8. 8.
    B.R. Hayward, P. Corzine, Thorium-uranium fuel elements for SRE, in Second Int’l Conference on the Peaceful Uses of Atomic Energy (Geneva, 1958) p. P/785Google Scholar
  9. 9.
    The use of thorium in nuclear power reactors, WASH 1097 (Department of Reactor Development Technology, USAEC, 1969)Google Scholar
  10. 10.
    S. Das, R. Kumar, S. Kaity, S. Neogy, K.N. Hareendran, S.B. Roy, B.S.S. Daniel, G.P. Chaudhari, Characterization of microstructural, mechanical and thermal properties and ageing study of Th–3 wt.% U alloy. Nucl. Eng. Des. 282, 116–125 (2015)CrossRefGoogle Scholar
  11. 11.
    S. Das, S.B. Roy, G.P. Chaudhari, B.S.S. Daniel, Microstructural evolution of as-cast Th-U alloys. Prog. Nucl. Energy 88, 285–296 (2016)CrossRefGoogle Scholar
  12. 12.
    S. Das, S. Kaity, R. Kumar, J. Banerjee, S.B. Roy, G.P. Chaudhari, B.S.S. Daniel, Characterization of microstructural, mechanical and thermophysical properties of Th-52U alloy. J. Nucl. Mater. 480, 223–234 (2016)CrossRefGoogle Scholar
  13. 13.
    B. Raj, An overview of R&D of fast reactor fuel cycle. Int. J. Nucl. Energy Sci. Technol. 1(2/3), 164 (2005)CrossRefGoogle Scholar
  14. 14.
    S.E. Gustafsson. Rev. Sci. Instrum 62(3), 797 (1991)Google Scholar
  15. 15.
    S.E. Gustafsson, International Patent Application No. PCT/SE89/00137Google Scholar
  16. 16.
    Hot Disk Thermal Constants Analyser, Instruction Manual, Software version 5.9, Hot Disk (Sweden, 2007)Google Scholar
  17. 17.
    D.E. Peterson, The Th-U (thorium-uranium) system. Bull. Alloy Ph. Diagr. 6, 443 (1985)CrossRefGoogle Scholar
  18. 18.
    Y. Takahashi, M. Yamawaki, Y. Yamamoto, Thermophysical properties of uranium-zirconium alloys. J. Nucl. Mater. 154, 141 (1988)CrossRefGoogle Scholar
  19. 19.
    R.L. Hamilton, O.K. Crosser, Thermal conductivity of heterogeneous two-componenet systems. Ind. Eng. Chem. Fundam. 1, 187 (1962)CrossRefGoogle Scholar
  20. 20.
    M.J. Peet, H.S. Hasan, H.K.D.H. Bhadeshia, Prediction of thermal conductivity of steels. Int. J. Heat Mass Transf. 54, 2602 (2011)CrossRefGoogle Scholar
  21. 21.
    K. Yamada, K. Kurosaki, M. Uno, S. Yamanka, Evaluation of thermal properties of uranium dioxide by molecular dynamics. J. Alloys Compd. 307, 10 (2000)CrossRefGoogle Scholar
  22. 22.
    H.J. Ryu, Y.S. Kim, J.M. Park, H.T. Chae, C.K. Kim, Performance evaluation of U-Mo/Al dispersion fuel by considering a fuel-matrix interaction. Nucl. Eng. Technol. 40, 409 (2008)CrossRefGoogle Scholar
  23. 23.
    K. Almadhoni, S. Khan, Evaluation of the effective thermal properties of aluminum metal matrix composites reinforced by ceramic particles. Int. J. Curr. Eng. Technol. 5(4) (2015)Google Scholar
  24. 24.
    Bin Wan, K. Yue, L. Zheng, X. Zhang, The effective thermal conductivity of composite materials with spherical. Adv. Mater. Res. 239–242(1662–8985), 1870–1874 (2011)CrossRefGoogle Scholar
  25. 25.
    J.K. Chen, S.F. Chen, On thermal conductivity of an in-situ, in Metal, Ceramic and Polymeric Composites for Various Uses, ch. 10, ed. by Dr. J. Cuppoletti (INTECH, 2011)Google Scholar
  26. 26.
    T.C. Choy, Effective Medium Theory, Principles and Applications (Oxford Science Publications, New York, USA, 1999)Google Scholar
  27. 27.
    E. Nechtelberger, The Properties of Cast Irons up to 500 °C. Technical report (Technicopy Ltd.,1980)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Santanu Das
    • 1
    Email author
  • Santu Kaity
    • 2
  • R. Kumar
    • 3
  • Joydipta Banerjee
    • 2
  • S. B. Roy
    • 3
  • G. P. Chaudhari
    • 4
  • B. S. S. Daniel
    • 4
  1. 1.Integrated Fuel Fabrication FacilityBhabha Atomic Research CentreMumbaiIndia
  2. 2.Radiometallurgy DivisionBhabha Atomic Research CentreTrombay, MumbaiIndia
  3. 3.Chemical Engineering GroupBhabha Atomic Research CentreMumbaiIndia
  4. 4.Indian Institute of Technology RoorkeeRoorkeeIndia

Personalised recommendations