Advertisement

Structural Aspect of the Impeller Pump

  • Can KangEmail author
  • Haixia Liu
  • Ning Mao
  • Yongchao Zhang
Chapter

Abstract

For fluid machinery, the interaction of fluid and solid components cannot be neglected. Sometimes, engineers care more about the solid parts than flows. Therefore, the effects of fluid on the solid parts have attracted efforts from multiple aspects. It should be noted that the shortages of current experimental techniques in treating these issues are apparent. Instead, numerical simulation plays an important role in the previously published studies. In this chapter, two cases are presented. The first case is a pump transporting high-temperature molten salt and the other case is a condensate pump. Numerical simulation is used to treat the problems with the two cases. In this connection, a joint application of CFD and FEA is substantiated. Transient pressure distributions obtained using CFD are used as the initial load exerted on the surface of the pump components. Then stress, deformation and vibration mode of the pump rotor are calculated with the finite element method. The purpose is not to dig into the flow field but to inspect the solid components. The maximum stress, stress distribution over the surface of the solid components, and the deformation are obtained. Furthermore, natural frequencies are calculated through the modal analysis.

References

  1. 1.
    Barth DL, Pacheco JE, Kolb WJ, Rush EE. Development of a high-temperature, long-shafted, molten-salt pump for power tower applications. J SolEnergy Eng. 2002;124(2):1059–1080.Google Scholar
  2. 2.
    Hiroshi H, Yoshio Y, Akio S, Yutaka T. Study on design of molten salt solar receivers for beam-down solar concentrator. Sol Energy. 2006;80(10):1255–1262.CrossRefGoogle Scholar
  3. 3.
    Chang JC, Yang CH, Yang HH, Hsueh ML, Ho W-Y, Chang JY, Sun IW. Pyridinium molten salts as co-adsorbents in dye-sensitized solar cells. Solar Energy. 2011;85(1):174–179.CrossRefGoogle Scholar
  4. 4.
    Wang Z, Naterer GF, Gabriel KS, Secnik E, Gravelsins R, Daggupati V. Thermal design of a solar hydrogen plant with a copper–chlorine cycle and molten salt energy storage. Int J Hydrogen Energy. 2011;36(17):11258–11272.CrossRefGoogle Scholar
  5. 5.
    Flueckiger S, Yang Z, Garimella SV. An integrated thermal and mechanical investigation of molten-salt thermocline energy storage. Appl Energy. 2011;88(6):2098–2105.CrossRefGoogle Scholar
  6. 6.
    Shao C, Zhou J, Cheng W. Experimental and numerical study of external performance and internal flow of a molten salt pump that transports fluids with different viscosities. Int J Heat Mass Transf. 2015;89:627–640.CrossRefGoogle Scholar
  7. 7.
    Kang C, Zhou L, Wang W, Yang M. Influence of axial vane on inner flow and performance of a molten-salt pump, ASME-JSME-KSME. Joint Fluids Eng Conf. 2011;2011:249–255.Google Scholar
  8. 8.
    Childs DW. Fluid-structure interaction forces at pump-impeller-shroud surfaces for rotordynamic calculations. J Vib Acoust Stress Reliab Des. 1989;111(3):216–225.CrossRefGoogle Scholar
  9. 9.
    Hu Y, Wang D, Yuan F, Yin J. Numerical study on rotordynamic coefficients of the seal of molten salt pump. Nucl Sci Tech. 2016;27(5):168–178.CrossRefGoogle Scholar
  10. 10.
    Fu Q, Yuan S, Zhu R. Calculation and analysis of the critical rotating speed of the rotor system of a centrifugal charging pump in a nuclear power plant. J Eng Thermal Energy Power. 2012;27(5):604–609.Google Scholar
  11. 11.
    Benra F-K, Dohmen HJ. Comparison of pump impeller orbit curves obtained by measurement and FSI simulation. In: ASME 2007 pressure vessels and piping conference, 2007, p. 41–48.Google Scholar
  12. 12.
    Peng GJ, Wang ZW, Yan ZG, Liu RX. Strength analysis of a large centrifugal dredge pump case. Eng Fail Anal. 2009;16(1):321–328.CrossRefGoogle Scholar
  13. 13.
    Ashri M, Karuppanan S, Patil S, Ibrahim I. Modal analysis of a centrifugal pump impeller using finite element method. In: MATEC Web of Conferences. EDP Sciences, 2014.Google Scholar
  14. 14.
    Subramaniam L, Sendilvelan S. Modal analysis of a centrifugal pump impeller. Eur J Sci Res. 2012;79(1):5–14.Google Scholar
  15. 15.
    Artal Bartolo E, Cassou-Noguès P, Luengo I, Melle Hernández A. A modal approach for vibration analysis and condition monitoring of a centrifugal pump. Int J Eng Sci Technol. 2011;3(8):321–343.zbMATHGoogle Scholar
  16. 16.
    Kang C, Zhang G, Li L, Li Y. Flow and heat transfer in an air-cooling device for a molten-salt pump. In: ASME/JSME/KSME 2015 joint fluids engineering conference, 2015:V001T09A007.Google Scholar
  17. 17.
    Egusquiza E, Valero C, Huang X, Jou E, Guardo A, Rodriguez C. Failure investigation of a large pump-turbine runner. Eng Fail Anal. 2012;23:27–34.CrossRefGoogle Scholar
  18. 18.
    Yuan S, Pei J, Yuan J. Numerical investigation on fluid structure interaction considering rotor deformation for a centrifugal pump. Chin J Mech Eng. 2011;24(4):539–545.CrossRefGoogle Scholar
  19. 19.
    Tang WZ, Yang L, Zhu W, Zhou YC, Guo JW, Lu C. Numerical simulation of temperature distribution and thermal-stress field in a turbine blade with multilayer-structure TBCs by a fluid-solid coupling method. J Mater Sci Technol. 2016;32(5):452–458.CrossRefGoogle Scholar
  20. 20.
    Langthjem MA, Olhoff N. A numerical study of flow-induced noise in a two-dimensional centrifugal pump. Part I. Hydrodynamics. J Fluids Struct. 2004;19(3):349–368.CrossRefGoogle Scholar
  21. 21.
    Kearney D, Kelly B, Herrmann U, Cable R, Pacheco J, Mahoney R, Price H, Blake D, Nava P, Potrovitza N. Engineering aspects of a molten salt heat transfer fluid in a trough solar field. Energy. 2004;29(5):861–870.CrossRefGoogle Scholar
  22. 22.
    Lancha AM, Serrano M, Briceño DG. Failure analysis of a condensate pump shaft. Eng Fail Anal. 1999;6(6):337–353.CrossRefGoogle Scholar
  23. 23.
    Egusquiza E, Valero C, Valentin D, Presas A, Rodriguez CG. Condition monitoring of pump-turbines. New Challenges Meas. 2015;67:151–163.Google Scholar
  24. 24.
    Mustata SC, Dracea D, Tronac AS, Sarbu N, Constantin E. Diagnosis and vibration diminishing in pump operation. Procedia Eng. 2015;100:970–976.CrossRefGoogle Scholar
  25. 25.
    Bordoloi DJ, Tiwari R. Identification of suction flow blockages and casing cavitations in centrifugal pumps by optimal support vector machine techniques. J Braz Soc Mech Sci Eng. 2017;39:2957–2968.CrossRefGoogle Scholar
  26. 26.
    Osada T, Kawakami T, Yokoi T, Tsujimoto Y. Field study on pump vibration and ISO’s new criteria. J Fluids Eng-Trans ASME. 1999;121:798–803.CrossRefGoogle Scholar
  27. 27.
    Adamkowski A, Henke A, Lewandowski M. Resonance of torsional vibrations of centrifugal pump shafts due to cavitation erosion of pump impellers. Eng Fail Anal. 2016;70:56–72.CrossRefGoogle Scholar
  28. 28.
    Lomakin VO, Chaburko PS, Kuleshova MS. Multi-criteria optimization of the flow of a centrifugal pump on energy and vibroacoustic characteristics. Procedia Eng. 2017;176:476–482.CrossRefGoogle Scholar
  29. 29.
    Spence R, Amaral-Teixeira J. Investigation into pressure pulsations in a centrifugal pump using numerical methods supported by industrial tests. Comput Fluids. 2008;37:690–704.CrossRefGoogle Scholar
  30. 30.
    Kang C, Li Y. The effect of twin volutes on the flow and radial hydraulic force production in a submersible centrifugal pump. Proc Inst Mech Eng, Part A: J Power Energy. 2015;229(2):221–237.CrossRefGoogle Scholar
  31. 31.
    El-Gazzar DM. Finite element analysis for structural modification and control resonance of a vertical pump. Alexandria Eng J. 2017;56:695–707.CrossRefGoogle Scholar
  32. 32.
    Zhang M, Jiang Z, Feng K. Research on variational mode decomposition in rolling bearings fault diagnosis of the multistage centrifugal pump. Mech Syst Signal Process. 2017;93:460–493.CrossRefGoogle Scholar
  33. 33.
    Buono D, Siano D, Frosina E, Senatore A. Gerotor pump cavitation monitoring and fault diagnosis using vibration analysis through the employment of auto-regressive-moving-average technique. Simul Model Pract Theory. 2017;71:61–82.CrossRefGoogle Scholar
  34. 34.
    Zhang J, Cai S, Li Y, Zhu H, Zhang Y. Visualization study of gas–liquid two-phase flow patterns inside a three-stage rotodynamic multiphase pump. Exp Thermal Fluid Sci. 2016;70:125–138.CrossRefGoogle Scholar
  35. 35.
    Norrbin CS, Childs DW, Phillips S. Including housing–casing fluid in a lateral rotordynamics analysis on electric submersible pumps. J Eng Gas Turbines Power. 2017;139(6):062505–1–12.CrossRefGoogle Scholar
  36. 36.
    Minette RS, SilvaNeto SF, Vaz LA, Monteiro U. Experimental modal analysis of electrical submersible pumps. Ocean Eng. 2016;124:168–179.CrossRefGoogle Scholar
  37. 37.
    Long Y, Zhu RS, Wang DZ, Yin JL, Lin TB. Numerical and experimental investigation on the diffuser optimization of a reactor coolant pump with orthogonal test approach. J Mech Sci Technol. 2016;30(11):4941–4948.CrossRefGoogle Scholar
  38. 38.
    Al-Qutubm AM, Khalifa AE, Al-Sulaiman FA. Exploring the effect of V-shaped cut at blade exit of a double volute centrifugal pump. J Pressure Vessel Technol-Trans ASME. 2012;134:021301–1–8.Google Scholar
  39. 39.
    Kumar A, Kumar R. Time-frequency analysis and support vector machine in automatic detection of defect from vibration signal of centrifugal pump. Measurement. 2017;108:119–133.CrossRefGoogle Scholar
  40. 40.
    Hsu C-N. Experimental and performance analyses of a turbomolecular pump rotor system. Vacuum. 2015;121:260–273.CrossRefGoogle Scholar
  41. 41.
    Tompkins M, Stakenborghs R, Kramer G. Use of FEA software in evaluating pump vibration and potential remedial actions to abate resonance in industrial vertical pump/motor combinations. In: Proceedings of the 2016 24th international conference on nuclear engineering, ICONE24, 26–30 June, 2016, Charlotte, USA.Google Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Can Kang
    • 1
    Email author
  • Haixia Liu
    • 2
  • Ning Mao
    • 3
  • Yongchao Zhang
    • 4
  1. 1.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina
  2. 2.School of Materials Science and EngineeringJiangsu UniversityZhenjiangChina
  3. 3.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina
  4. 4.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations