Drag-Type Hydraulic Rotor

  • Can KangEmail author
  • Haixia Liu
  • Ning Mao
  • Yongchao Zhang


The advantages of the drag-type rotor in wind energy utilization have been widely acknowledged. In recent years, the exploitation of water energy in off-shore regions, rivers or even pipes guides the application of the drag-type rotor into a new stage. In this chapter, a drag-type rotor operating in the medium of water is investigated. The water tunnel is used to furnish flow environment for the rotor. Flow patterns near the rotor are measured with particle image velocimetry technique and the wake flow is particularly emphasized. At various rotor setting angles and upstream velocity magnitudes, velocity and vorticity distributions in the wake flows are depicted and compared. The time-dependent torque coefficient of the rotor is calculated based on CFD results.


  1. 1.
    Laws ND, Epps BP. Hydrokinetic energy conversion: technology, research, and outlook. Renew Sustain Energy Rev. 2016;57:1245–1259.CrossRefGoogle Scholar
  2. 2.
    Lago LI, Ponta FL, Chen L. Advances and trends in hydrokinetic turbine systems. Energy Sustain Dev. 2010;14:287–296.CrossRefGoogle Scholar
  3. 3.
    Vermaak HJ, Kusakana K, Koko SP. Status of micro-hydrokinetic river technology in rural applications: a review of literature. Renew Sustain Energy Rev. 2014;29:625–633.CrossRefGoogle Scholar
  4. 4.
    Kirke BK. Tests on ducted and bare helical and straight blade Darrieus hydrokinetic turbines. Renew Energy. 2011;36(11):3013–3022.CrossRefGoogle Scholar
  5. 5.
    Al-Bahadly I. Building a wind turbine for rural home. Energy Sustain Dev. 2009;13:159–165.CrossRefGoogle Scholar
  6. 6.
    Sahim K, Santoso D, Radentan A. Performance of combined water turbine with semielliptic section of the Savonius rotor. Int J Rotating Mach. 2013;2013, Article ID: 985943.Google Scholar
  7. 7.
    Chen J, Yang HX, Liu CP, Lau CH, Lo M. A novel vertical axis water turbine for power generation from water pipelines. Energy. 2013;54:184–193.CrossRefGoogle Scholar
  8. 8.
    Ikeda T, Iio S, Tatsuno K. Performance of nano-hydraulic turbine utilizing waterfalls. Renew Energy. 2010;35(1):293–300.CrossRefGoogle Scholar
  9. 9.
    Kumar D, Sarkar S. Numerical investigation of hydraulic load and stress induced in Savonius hydrokinetic turbine with the effects of augmentation techniques through fluid-structure interaction analysis. Energy. 2016;116:609–618.CrossRefGoogle Scholar
  10. 10.
    Thiyagaraj J, Rahamathullah I, SureshPrabu P. Experimental Investigations on the performance characteristics of a modified four bladed Savonius hydro-kinetic turbine. Int J Renew Energy Res. 2016;6(4):1530–1536.Google Scholar
  11. 11.
    Kamoji MA, Kedare SB, Prabhu SV. Performance tests on helical Savonius rotors. Renew Energy. 2009;34(3):521–529.CrossRefGoogle Scholar
  12. 12.
    Miyoshi N, Shouichiro I, Toshihiko I. Performance of Savonius rotor for environmentally friendly hydraulic turbine. J Fluid Sci Technol. 2008;3(3):420–429.CrossRefGoogle Scholar
  13. 13.
    McTavish S, Feszty D, Sankar T. Steady and rotating computational fluid dynamics simulations of a novel vertical axis wind turbine for small-scale power generation. Renew Energy. 2012;41:171–179.CrossRefGoogle Scholar
  14. 14.
    Zhou T, Rempfer D. Numerical study of detailed flow field and performance of Savonius wind turbines. Renew Energy. 2013;51:373–378.CrossRefGoogle Scholar
  15. 15.
    Rosmin N, Jauhari AS, Mustaamal AH, Husin F, Hassan MY. Experimental study for the single-stage and double-stage two-bladed Savonius micro-sized turbine for rain water harvesting (RWH) system. Energy Procedia. 2015;68:274–281.CrossRefGoogle Scholar
  16. 16.
    Damak A, Driss Z, Abid MS. Experimental investigation of helical Savonius rotor with a twist of 180°. Renew Energy. 2013;52:136–142.CrossRefGoogle Scholar
  17. 17.
    Iio S, Katayama Y, Uchiyama F, Sato E, Ikeda T. Influence of setting condition on characteristics of Savonius hydraulic turbine with a shield plate. J Thermal Sci. 2011;20(3):224–228.CrossRefGoogle Scholar
  18. 18.
    Akwa JV, Vielmo HA, Petry AP. A review on the performance of Savonius wind turbines. Renew Sustain Energy Rev. 2012;16(5):3054–3064.CrossRefGoogle Scholar
  19. 19.
    Roy S, Saha UK. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Appl Energy. 2015;137:117–125.CrossRefGoogle Scholar
  20. 20.
    Kumar A, Saini RP. Performance parameters of Savonius type hydrokinetic turbine—a review. Renew Sustain Energy Rev. 2016;64:289–310.MathSciNetCrossRefGoogle Scholar
  21. 21.
    Harries T, Kwan A, Brammer J, Falconer R. Physical testing of performance characteristics of a novel drag-driven vertical axis tidal stream turbine; with comparisons to a conventional Savonius. Int J Mar Energy. 2016;14:215–228.CrossRefGoogle Scholar
  22. 22.
    Goh SC, Boopathy SR, Krishnaswami C, Schlüter JU. Tow testing of Savonius wind turbine above a bluff body complemented by CFD simulation. Renew Energy. 2016;87:332–345.CrossRefGoogle Scholar
  23. 23.
    Rafiuddin Ahmed M, Faizal M, Prasad K, Cho Y-J, Kim C-G, Lee Y-H. Exploiting the orbital motion of water particles for energy extraction from waves. J Mech Sci Technol. 2010;24(4):943–949.CrossRefGoogle Scholar
  24. 24.
    Khan MNI, Iqbal T, Hinchey M, Masek V. Performance of Savonius rotor as a water current turbine. J Ocean Technol. 2009;4(2):71–83.Google Scholar
  25. 25.
    Danao LA, Eboibi O, Howell R. An experimental investigation into the influence of unsteady wind on the performance of a vertical axis wind turbine. Appl Energy. 2013;107:403–411.CrossRefGoogle Scholar
  26. 26.
    Kailash G, Eldho TI, Prabhu SV. Performance study of modified Savonius water turbine with two deflector plates. Int J Rotating Mach 2012;2012, Article ID 679247.CrossRefGoogle Scholar
  27. 27.
    Edwards JM, Danao LA, Howell RJ. PIV measurements and CFD simulation of the performance and flow physics and of a small-scale vertical axis wind turbine. Wind Energy. 2015;18(2):201–217.CrossRefGoogle Scholar
  28. 28.
    Fujisawa N, Gotoh F. Visualization study of the flow in and around a Savonius rotor. Exp Fluids. 1992;12(6):407–412.CrossRefGoogle Scholar
  29. 29.
    Altan BD, Altan G, Kovan V. Investigation of 3D printed Savonius rotor performance. Renew Energy. 2016;99:584–591.CrossRefGoogle Scholar
  30. 30.
    Rafiuddin Ahmed M, Faizal M, Lee Y-H. Optimization of blade curvature and inter-rotor spacing of Savonius rotors for maximum wave energy extraction. Ocean Eng. 2013;65:32–38.CrossRefGoogle Scholar
  31. 31.
    Akinari S, Yuichi M, Yuji T, Yasushi T. Interactive flow field around two Savonius turbines. Renew Energy. 2011;36(2):536–545.CrossRefGoogle Scholar
  32. 32.
    Kang C, Liu H, Xin Y. Review of fluid dynamics aspects of Savonius-rotor-based vertical-axis wind rotors. Renew Sustain Energy Rev. 2014;33:499–508.CrossRefGoogle Scholar
  33. 33.
    Lee J-H, Lee Y-T, Lim H-C. Effect of twist angle on the performance of Savonius wind turbine. Renew Energy. 2016;89:231–244.CrossRefGoogle Scholar
  34. 34.
    Wang L, Yeung RW. On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations. Appl Energy. 2016;183:823–836.CrossRefGoogle Scholar
  35. 35.
    Faizal M, Rafiuddin Ahmed M, Lee Y-H. On utilizing the orbital motion in water waves to drive a Savonius rotor. Renew. Energy. 2010;35(1):164–169.Google Scholar
  36. 36.
    Ghosh A, Biswas A, Sharma KK, Gupta R. Computational analysis of flow physics of a combined three bladed Darrieus Savonius wind rotor. J Energy Inst. 2015;88(4):425–437.CrossRefGoogle Scholar
  37. 37.
    Al-Kayiem HH, Bhayo BA, Assadi M. Comparative critique on the design parameters and their effect on the performance of S-rotors. Renew Energy. 2016;99:1306–1317.CrossRefGoogle Scholar
  38. 38.
    Nasef MH, El-Askary WA, AbdEL-hamid AA, Gad HE. Evaluation of Savonius rotor performance: static and dynamic studies. J Wind Eng Ind Aerodyn. 2013;123:1–11.CrossRefGoogle Scholar
  39. 39.
    Sharma S, Sharma RK. Performance improvement of Savonius rotor using multiple quarter blades—a CFD investigation. Energy Convers Manage. 2016;127:43–54.CrossRefGoogle Scholar
  40. 40.
    Nasef MH, El-Askary WA, AbdEL-hamid AA, Gad HE. Evaluation of Savonius rotor performance: static and dynamic studies. J Wind Eng Ind Aerodyn. 2013;123:1–11.CrossRefGoogle Scholar
  41. 41.
    Frikha S, Driss Z, Ayadi E, Masmoudi Z, Abid MS. Numerical and experimental characterization of multi-stage Savonius rotors. Energy. 2016;114:382–404.CrossRefGoogle Scholar
  42. 42.
    Lam HF, Peng HY. Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations. Renew Energy. 2016;90:386–398.CrossRefGoogle Scholar
  43. 43.
    Fujisawa N. Velocity measurements and numerical calculations of flow fields in and around Savonius rotors. J Wind Eng Ind Aerodyn. 1996;59(1):39–50.CrossRefGoogle Scholar
  44. 44.
    Wekesa DW, Wang C, Wei Y, Zhu W. Experimental and numerical study of turbulence effect on aerodynamic performance of a small-scale vertical axis wind turbine. J Wind Eng Ind Aerodyn. 2016;157:1–14.CrossRefGoogle Scholar
  45. 45.
    Dobrev I, Massouh F. CFD and PIV investigation of unsteady flow through Savonius wind turbine. Energy Procedia. 2011;6:711–720.CrossRefGoogle Scholar
  46. 46.
    Kacprzak K, Liskiewicz G, Sobczak K. Numerical investigation of conventional and modified Savonius wind turbines. Renew Energy. 2013;60:578–585.CrossRefGoogle Scholar
  47. 47.
    Sarma NK, Biswas A, Misra RD. Experimental and computational evaluation of Savonius hydrokinetic turbine for low velocity condition with comparison to Savonius wind turbine at the same input power. Energy Convers Manage. 2014;83:88–98.CrossRefGoogle Scholar
  48. 48.
    Roy S, Saha UK. Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine. Appl Energy. 2015;137:117–125.CrossRefGoogle Scholar

Copyright information

© Science Press, Beijing and Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Can Kang
    • 1
    Email author
  • Haixia Liu
    • 2
  • Ning Mao
    • 3
  • Yongchao Zhang
    • 4
  1. 1.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina
  2. 2.School of Materials Science and EngineeringJiangsu UniversityZhenjiangChina
  3. 3.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina
  4. 4.School of Energy and Power EngineeringJiangsu UniversityZhenjiangChina

Personalised recommendations