Advertisement

Biogeography-Based Optimization

  • Yujun Zheng
  • Xueqin Lu
  • Minxia Zhang
  • Shengyong Chen
Chapter

Abstract

Biogeography is a discipline of the distribution, migration, and extinction of biological populations in habitats. Biogeography-based optimization (BBO) is a heuristic inspired by biogeography for optimization problems, where each solution is analogous to a habitat with an immigration rate and an emigration rate. BBO evolves a population of solutions by continuously migrating features probably from good solutions to poor solutions. This chapter introduces the basic BBO and its recent advances for constrained optimization, multi-objective optimization, and combinatorial optimization.

References

  1. 1.
    Beyer HG (2013) The theory of evolution strategies. Springer Science & Business Media, BerlinGoogle Scholar
  2. 2.
    Bi X, Wang J (2012) Constrained optimization based on epsilon constrained biogeography-based optimization. In: International conference on intelligent human-machine systems and cybernetics, pp 369–372.  https://doi.org/10.1109/IHMSC.2012.184
  3. 3.
    Bi X, Wang J, Li B (2014) Multi-objective optimization based on hybrid biogeography-based optimization. Sys Eng Electron 179–186Google Scholar
  4. 4.
    Cai Z, Wang Y (2006) A multiobjective optimization-based evolutionary algorithm for constrained optimization. IEEE Trans Evol Comput 10:658–675CrossRefGoogle Scholar
  5. 5.
    Clerc M (2003) Tribes-un exemple d’optimisation par essaim particulaire sans parametres de controle. In: Proceedings Sminaire Optimisation par Essaim Particulaire, pp 1–14Google Scholar
  6. 6.
    Clerc M (2006) Particle swarm optimization. ISTE. Wiley, New YorkGoogle Scholar
  7. 7.
    Coello Coello CA (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287.  https://doi.org/10.1016/S0045-7825(01)00323-1MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Darwin C (2004) On the origin of species, 1859. Routledge, LondonGoogle Scholar
  9. 9.
    Dorigo M, Di Caro G (1999) Ant colony optimization: a new meta-heuristic. In: Proceedings of the IEEE congress on evolutionary computation, vol 2, pp 1470–1477.  https://doi.org/10.1109/CEC.1999.782657
  10. 10.
    Ergezer M, Simon D (2011) Oppositional biogeography-based optimization for combinatorial problems. In: Proceedings of the IEEE congress on evolutionary computation, pp 1496–1503Google Scholar
  11. 11.
    Fan J, Zhang X (2009) Piecewise logistic chaotic map and its performance analysis. Acta Electron Sin 720–725Google Scholar
  12. 12.
    Fogel DB (1994) An introduction to simulated evolutionary optimization. IEEE Trans Neural Netw 5:3–14.  https://doi.org/10.1109/72.265956CrossRefGoogle Scholar
  13. 13.
    Fogel DB (1997) Evolutionary algorithms in theory and practice. Complexity 2:26–27.  https://doi.org/10.1002/(SICI)1099-0526(199703/04)2:4<26::AID-CPLX6<3.0.CO;2-7CrossRefGoogle Scholar
  14. 14.
    Goldberg DE (1989) Genetic algorithms in search. Optimization and machine learning. Addison-Wesley, ReadingzbMATHGoogle Scholar
  15. 15.
    Hamdad L, Achab A, Boutouchent A (2013) Self organized biogeography algorithm for clustering. Nat Artif Models Comput Biol 396–405Google Scholar
  16. 16.
    Hanski I (1999) Metapopulation ecology. Oxford University Press, OxfordGoogle Scholar
  17. 17.
    Ho Y, Pepyne D (2002) Simple explanation of the no-free-lunch theorem and its implications. J Optim Theory Appl 115:549–570MathSciNetCrossRefGoogle Scholar
  18. 18.
    Ilhem B, Amitava C, Patrick S, Mohamed AN (2012) Biogeography-based optimization for constrained optimization problems. Comput Oper Res 39:3293–3304.  https://doi.org/10.1016/j.cor.2012.04.012MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Khatib W, Fleming P (1998) The stud GA: a mini revolution? In: parallel problem solving from nature. Lecture notes in computer science, vol 1498, pp 683–691.  https://doi.org/10.1007/BFb0056910Google Scholar
  20. 20.
    Ma H (2010) An analysis of the equilibrium of migration models for biogeography-based optimization. Inform Sci 180:3444–3464.  https://doi.org/10.1016/j.ins.2010.05.035CrossRefzbMATHGoogle Scholar
  21. 21.
    Ma H, Simon D (2011) Analysis of migration models of biogeography-based optimization using markov theory. Eng Appl Artif Intell 24:1052–1060.  https://doi.org/10.1016/j.engappai.2011.04.012CrossRefGoogle Scholar
  22. 22.
    Ma H, Ruan X, Pan Z (2012) Handling multiple objectives with biogeography-based optimization. Int J Autom Comput 9:30–36CrossRefGoogle Scholar
  23. 23.
    MacArthur R, Wilson E (1967) The theory of biogeography. Princeton University Press, PrincetonGoogle Scholar
  24. 24.
    Michalewicz Z, Schoenauer M (1996) Evolutionary algorithms for constrained parameter optimization problems. Evol Comput 4:1–32CrossRefGoogle Scholar
  25. 25.
    Mo H, Xu L (2010) Biogeography migration algorithm for traveling salesman problem. Adv Swarm Intell 405–414Google Scholar
  26. 26.
    Mühlenbein H, Schlierkamp-Voosen D (1993) Predictive models for the breeder genetic algorithm I. continuous parameter optimization. Evol Comput 1:25–49.  https://doi.org/10.1162/evco.1993.1.1.25CrossRefGoogle Scholar
  27. 27.
    Parmeec IC (2001) Evolutionary and adaptive computing in engineering design. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  28. 28.
    Price K, Storn RM, Lampinen JA (2005) Differential evolution: a practical approach to global optimization. Natural computing seriesGoogle Scholar
  29. 29.
    Runarsson T, Yao X (2000) Stochastic ranking for constrained evolutionary optimization. IEEE Trans Evol Comput 4:284–294.  https://doi.org/10.1109/4235.873238CrossRefGoogle Scholar
  30. 30.
    Schott JR (1995) Fault tolerant design using single and multicriteria genetic algorithm optimization. Cell Immunol 37Google Scholar
  31. 31.
    Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12:702–713.  https://doi.org/10.1109/TEVC.2008.919004CrossRefGoogle Scholar
  32. 32.
    Simon D (2009) Biogeography-based optimization. http://academic.csuohio.edu/simond/bbo/
  33. 33.
    Simon D, Rarick R, Ergezer M, Du D (2011) Analytical and numerical comparisons of biogeography-based optimization and genetic algorithms. Inform Sci 181(7):1224–1248CrossRefGoogle Scholar
  34. 34.
    Song Y, Liu M, Wang Z (2010) Biogeography-based optimization for the traveling salesman problems. In: Third international joint conference on computational science and optimization, vol 1, pp 295–299.  https://doi.org/10.1109/CSO.2010.79
  35. 35.
    Storn R, Price K (1997) Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11:341–359.  https://doi.org/10.1023/A:1008202821328MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Takahama T, Sakai S (2010) Efficient constrained optimization by the constrained adaptive differential evolution. In: IEEE congress on evolutionary computation, pp 1–8.  https://doi.org/10.1109/CEC.2010.5586545
  37. 37.
    Tang L, Wang X (2013) A hybrid multiobjective evolutionary algorithm for multiobjective optimization problems. IEEE Trans Evol Comput 17:20–45CrossRefGoogle Scholar
  38. 38.
    Tao G, Michalewicz Z (1998) Inver-over operator for the TSP. Parallel Probl Solving Nat 803–812Google Scholar
  39. 39.
    Wallace A (1876) The geographical distribution of animals: with a study of the relations of living and extinct faunas as elucidating the past changes of the earth’s surface. Macmillan and CompanyGoogle Scholar
  40. 40.
    Wesche TA, Goertler, CM, Hubert WA (1987) Modified habitat suitability index model for brown trout in Southeastern Wyoming. N Am J Fish Manag 7:232–237CrossRefGoogle Scholar
  41. 41.
    Whittaker RJ, Fernández-Palacios JM (1998) Island biogeography. Oxford University Press, OxfordGoogle Scholar
  42. 42.
    Wolpert D, Macready W (1997) No free lunch theorems for optimization. IEEE Trans Evol Comput 1:67–82.  https://doi.org/10.1109/4235.585893CrossRefGoogle Scholar
  43. 43.
    Xu Z (2013) Study on multi-objective optimization theory and application based on biogeography algorithm. Ph.D. thesisGoogle Scholar
  44. 44.
    Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Trans Evol Comput 3:82–102.  https://doi.org/10.1109/4235.771163CrossRefGoogle Scholar
  45. 45.
    Zhao B, Deng C, Yang Y (2012) Novel binary biogeography-based optimization algorithm for the knapsack problems. Advances in swarm intelligence. Lecture notes in computer science, vol 7331. Springer, Berlin, pp 217–224Google Scholar
  46. 46.
    Zheng YJ, Ling HF, Xue JY (2014) Ecogeography-based optimization: enhancing biogeography-based optimization with ecogeographic barriers and differentiations. Comput Oper Res 50:115–127.  https://doi.org/10.1016/j.cor.2014.04.013CrossRefzbMATHGoogle Scholar
  47. 47.
    Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary methods for design, optimisation and control with applications to industrial problems.  https://doi.org/10.3929/ethz-a-004284029

Copyright information

© Springer Nature Singapore Pte Ltd. and Science Press, Beijing 2019

Authors and Affiliations

  • Yujun Zheng
    • 1
  • Xueqin Lu
    • 2
  • Minxia Zhang
    • 2
  • Shengyong Chen
    • 2
  1. 1.Hangzhou Institute of Service EngineeringHangzhou Normal UniversityHangzhouChina
  2. 2.College of Computer Science and TechnologyZhejiang University of TechnologyHangzhouChina

Personalised recommendations