Advertisement

Public Health Adaptation to Heat Waves in Response to Climate Change in China

  • Yiling He
  • Rui Ma
  • Meng Ren
  • Wenmin Liao
  • Na Zhang
  • Yanan Su
  • Cho Kwong Charlie Lam
  • Suhan Wang
  • Cunrui HuangEmail author
Chapter

Abstract

This chapter examines heat-related health effects and suggests public health adaptation strategies to heat waves in China. Due to climate change and urban heat island effects, a future increase in extreme heat events could lead to excess heat-related mortality and morbidity in urban populations. However, the risk of heat exposure is not evenly distributed. Some demographic groups are more prone to heat-related illnesses, such as outdoor workers, children, the elderly, and people with preexisting health conditions. Furthermore, population aging and acclimatization limits both present challenges for adapting to a warmer climate in China. Considering these challenges, this chapter identifies several adaptation strategies to address the health impacts of heat waves and discusses the issues of implementing these policies and measures. For example, heat-health action plans require the government to coordinate with supporting agencies for deciding the timing of activation and deactivation. Heat-health warning systems can also be developed based on temperature threshold, but this threshold varies in different cities. During heat waves, real-time surveillance data can provide early detection of heat-related health threats. In addition, the government can use heat vulnerability mapping to identify populations susceptible to heat waves and provide adequate healthcare and social services for these vulnerable groups. Identifying vulnerable populations alone is insufficient, as effective risk communication is also required for behavior change, including personal heat exposure reduction strategies. Finally, climate-sensitive urban planning such as optimizing building design and urban greening would alleviate the adverse health impacts of heat waves in China.

Keywords

Heat wave Climate change Health impact Vulnerability Adaptation strategy China 

Notes

Acknowledgement

This work was supported by the National Key R&D Program of China (grant number 2018YFA0606200), the Natural Science Foundation of Guangdong Province (grant number 2016A030313216), the Asia-Pacific Network for Global Change (grant number CRRP2016-10MYSG02-Huang), and the Natural Science Foundation of Guangdong Province, China (grant number 2017A030310249).

References

  1. 1.
    Horton RM, Mankin JS, Lesk C, Coffel E, Raymond C. A review of recent advances in research on extreme heat events. Curr Clim Change Rep. 2016;2:242–59.CrossRefGoogle Scholar
  2. 2.
    Steadman RG. A universal scale of apparent temperature. J Clim Appl Meteorol. 1984;23:1674–87.CrossRefGoogle Scholar
  3. 3.
    IPCC. Climate change 2014: synthesis report. In: Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Geneva: IPCC; 2014.Google Scholar
  4. 4.
    Fischer EM, Knutti R. Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Chang. 2015;5:560.CrossRefGoogle Scholar
  5. 5.
    Vimal M, Auroop RG, Bart N, Dennis PL. Changes in observed climate extremes in global urban areas. Environ Res Lett. 2015;10:024005.CrossRefGoogle Scholar
  6. 6.
    Luo Y, Qin D, Zhang R, Wang S, Zhang D. Climatic and environmental changes in China. In: Qin D, Ding Y, Mu M, editors. Climatic and environmental change in China: 1951-2012. New York: Springer Environmental Science and Engineering; 2016.CrossRefGoogle Scholar
  7. 7.
    Bailey M, Esposito C, Clark B, Foster C, Goeken D, Hanel J, Johnson E, Schmitt S. Colorado’s climate and Colorado’s health examining the connection. Denver: Courtesy of the Colorado Health Institute; 2017.Google Scholar
  8. 8.
    Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklöv J, Forsberg B, Leone M, De Sario M, Bell ML, YLL G, Wu CF, Kan H, Yi SM, de Sousa Zanotti Stagliorio Coelho M, PHN S, Honda Y, Kim H, Armstrong B. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386:369–75.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Gasparrini A, Guo Y, Hashizume M, Lavigne E, Zanobetti A, Schwartz J, Tobias A, Tong S, Rocklov J, Forsberg B, Leone M, De Sario M, Bell ML, Guo YL, Wu CF, Kan H, Yi SM, de Sousa Zanotti Stagliorio Coelho M, Saldiva PH, Honda Y, Kim H, Armstrong B. Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet. 2015;386:369–75.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Margolis HG. Heat waves and rising temperatures: human health impacts and the determinants of vulnerability. In: Pinkerton KE, Rom WN, editors. Global climate change and public health. New York: Springer; 2014. p. 85–120.CrossRefGoogle Scholar
  11. 11.
    Huang C, Barnett AG, Wang X, Tong S. Effects of extreme temperatures on years of life lost for cardiovascular deaths: a time series study in Brisbane, Australia. Circ Cardiovasc Qual Outcomes. 2012;5:609–14.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Kravchenko J, Abernethy AP, Fawzy M, Lyerly HK. Minimization of heatwave morbidity and mortality. Am J Prev Med. 2013;44:274–82.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Li M, Gu S, Bi P, Yang J, Liu Q. Heat waves and morbidity: current knowledge and further direction-a comprehensive literature review. Int J Environ Res Public Health. 2015;12:5256–83.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Basu R, Pearson D, Malig B, Broadwin R, Green R. The effect of high ambient temperature on emergency room visits. Epidemiology. 2012;23:813–20.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Kovats RS, Hajat S, Wilkinson P. Contrasting patterns of mortality and hospital admissions during hot weather and heat waves in greater London, UK. Occup Environ Med. 2004;61:893–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Ye X, Wolff R, Yu W, Vaneckova P, Pan X, Tong S. Ambient temperature and morbidity: a review of epidemiological evidence. Environ Health Perspect. 2012;120:19–28.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Gu S, Huang C, Bai L, Chu C, Liu Q. Heat-related illness in China, summer of 2013. Int J Biometeorol. 2016;60:131–7.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Kan H. Climate change and human health in China. Environ Health Perspect. 2011;119:A60–1.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Petkova EP, Morita H, Kinney PL. Health impacts of heat in a changing climate: how can emerging science inform urban adaptation planning? Curr Epidemiol Rep. 2014;1:67–74.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Gronlund CJ. Racial and socioeconomic disparities in heat-related health effects and their mechanisms: a review. Curr Epidemiol Rep. 2014;1:165–73.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Kjellstrom T, Briggs D, Freyberg C, Lemke B, Otto M, Hyatt O. Heat, human performance, and occupational health: a key issue for the assessment of global climate change impacts. Annu Rev Public Health. 2016;37:97–112.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Charbotel B, Fervers B, Droz JP. Occupational exposures in rare cancers: a critical review of the literature. Crit Rev Oncol Hematol. 2014;90:99–134.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Beck N, Balanay JAG, Johnson T. Assessment of occupational exposure to heat stress and solar ultraviolet radiation among groundskeepers in an eastern North Carolina university setting. J Occup Environ Hyg. 2018;15:105–16.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gubernot DM, Anderson GB, Hunting KL. Characterizing occupational heat-related mortality in the United States, 2000-2010: an analysis using the census of fatal occupational injuries database. Am J Ind Med. 2015;58:203–11.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Bartlett S, Larrieu S, Carcaillon L, Lefranc A, Helmer C, Dartigues J, Tavernier B, Ledrans M, Filleul L, Bonauto D, Anderson R, Rauser E, Burke B. Climate change and urban children: impacts and implications for adaptation in low- and middle-income countries factors associated with morbidity during the 2003 heat wave in two population-based cohorts of elderly subjects: Paquid and three city occupational heat illness in Washington state, 1995-2005. Environ Urban. 2008;20:501–19.CrossRefGoogle Scholar
  26. 26.
    Knowlton K, Rotkin-Ellman M, King G, Margolis HG, Smith D, Solomon G, Trent R, English P. The 2006 California heat wave: impacts on hospitalizations and emergency department visits. Environ Health Perspect. 2009;117:61–7.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Lee S, Lee H, Myung W, Kim EJ, Kim H. Mental disease-related emergency admissions attributable to hot temperatures. Sci Total Environ. 2018;616–617:688–94.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Thomas CL. Fatal isolation: the devastating Paris heat wave of 2003, by Richard C. Keller. Psychiatry. 2016;79:180–3.CrossRefGoogle Scholar
  29. 29.
    Sampson NR, Gronlund CJ, Buxton MA, Catalano L, White-Newsome JL, Conlon KC, O’Neill MS, McCormick S, Parker EA. Staying cool in a changing climate: reaching vulnerable populations during heat events. Glob Environ Chang. 2013;23:475–84.CrossRefGoogle Scholar
  30. 30.
    Crandall CG, Gonzalez-Alonso J. Cardiovascular function in the heat-stressed human. Acta Physiol (Oxf). 2010;199:407–23.CrossRefGoogle Scholar
  31. 31.
    Arbuthnott KG, Hajat S. The health effects of hotter summers and heat waves in the population of the United Kingdom: a review of the evidence. Environ Health. 2017;16:119.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Hopp S, Dominici F, Bobb JF. Medical diagnoses of heat wave-related hospital admissions in older adults. Prev Med. 2018;110:81–5.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Wang Q, Li C, Guo Y, Barnett AG, Tong S, Phung D, Chu C, Dear K, Wang X, Huang C. Environmental ambient temperature and blood pressure in adults: a systematic review and meta-analysis. Sci Total Environ. 2017;575:276–86.PubMedCrossRefGoogle Scholar
  34. 34.
    Luber G, McGeehin M. Climate change and extreme heat events. Am J Prev Med. 2008;35:429–35.PubMedCrossRefGoogle Scholar
  35. 35.
    Stollberger C, Lutz W, Finsterer J. Heat-related side-effects of neurological and non-neurological medication may increase heatwave fatalities. Eur J Neurol. 2009;16:879–82.PubMedCrossRefGoogle Scholar
  36. 36.
    Sommet A, Durrieu G, Lapeyre-Mestre M, Montastruc JL, Ctr AFP. A comparative study of adverse drug reactions during two heat waves that occurred in France in 2003 and 2006. Pharmacoepidemiol Drug Saf. 2012;21:285–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhao L, Lee X, Smith RB, Oleson K. Strong contributions of local background climate to urban heat islands. Nature. 2014;511:216–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Laaidi K, Zeghnoun A, Dousset B, Bretin P, Vandentorren S, Giraudet E, Beaudeau P. The impact of heat islands on mortality in Paris during the august 2003 heat wave. Environ Health Perspect. 2012;120:254–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Madrigano J, Ito K, Johnson S, Kinney PL, Matte T, Parsons K. A case-only study of vulnerability to heat wave-related mortality in New York city (2000-2011) human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance. Environ Health Perspect. 2015;123:672–8.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Sheng R, Li C, Wang Q, Yang L, Bao J, Wang K, Ma R, Gao C, Lin S, Zhang Y, Bi P, Fu C, Huang C, Liu X, Song Y, Yi W, Wang X, Zhu J. Does hot weather affect work-related injury? A case-crossover study in Guangzhou, China comparing the random forest with the generalized additive model to evaluate the impacts of outdoor ambient environmental factors on scaffolding construction productivity. Int J Hyg Environ Health. 2018;221:423–8.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zhou L, Dickinson RE, Tian Y, Fang J, Li Q, Kaufmann RK, Tucker CJ, Myneni RB. Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci U S A. 2004;101:9540–4.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA. Temperature and mortality in 11 cities of the eastern United States. Am J Epidemiol. 2002;155:80–7.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Chan EYY, Goggins WB, Kim JJ, Griffiths SM. A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. J Epidemiol Community Health. 2012;66:322–7.CrossRefGoogle Scholar
  44. 44.
    Zhang Y, Nitschke M, Krackowizer A, Dear K, Pisaniello D, Weinstein P, Tucker G, Shakib S, Bi P. Risk factors of direct heat-related hospital admissions during the 2009 heatwave in Adelaide, Australia: a matched case–control study. BMJ Open. 2016;6:e010666.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Xu Y, Dadvand P, Barrera-Gomez J, Sartini C, Mari-Dell’Olmo M, Borrell C, Medina-Ramon M, Sunyer J, Basagana X. Differences on the effect of heat waves on mortality by sociodemographic and urban landscape characteristics. J Epidemiol Community Health. 2013;67:519–25.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Larrieu S, Carcaillon L, Lefranc A, Helmer C, Dartigues JF, Tavernier B, Ledrans M, Filleul L. Factors associated with morbidity during the 2003 heat wave in two population-based cohorts of elderly subjects: Paquid and three city. Eur J Epidemiol. 2008;23:295–302.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Zanobetti A, O’Neill MS, Gronlund CJ, Schwartz JD. Susceptibility to mortality in weather extremes: effect modification by personal and small-area characteristics. Epidemiology. 2013;24:809–19.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Bouchama A, Dehbi M, Mohamed G, Matthies F, Shoukri M, Menne B. Prognostic factors in heat wave related deaths: a meta-analysis. Arch Intern Med. 2007;167:2170–6.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Dosio A, Mentaschi L, Fischer EM, Wyser K. Extreme heat waves under 1.5 °C and 2 °C global warming. Environ Res Lett. 2018;13:054006.CrossRefGoogle Scholar
  50. 50.
    Sun Y, Zhang X, Zwiers FW, Song L, Wan H, Hu T, Yin H, Ren G. Rapid increase in the risk of extreme summer heat in eastern China. Nat Clim Chang. 2014;4:1082–5.CrossRefGoogle Scholar
  51. 51.
    United Nations DoEaSA, Population Division (2018). 2018. World urbanization prospects: the 2018 revision.Google Scholar
  52. 52.
    Heaviside C, Vardoulakis S, Cai XM. Attribution of mortality to the urban heat island during heatwaves in the west midlands, UK. Environ Health. 2016;15(Suppl 1):27.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Yang J, Siri JG, Remais JV, Cheng Q, Zhang H, Chan KKY, Sun Z, Zhao Y, Cong N, Li X, Zhang W, Bai Y, Bi J, Cai W, Chan EYY, Chen W, Fan W, Fu H, He J, Huang H, Ji JS, Jia P, Jiang X, Kwan M-P, Li T, Li X, Liang S, Liang X, Liang L, Liu Q, Lu Y, Luo Y, Ma X, Schwartländer B, Shen Z, Shi P, Su J, Wu T, Yang C, Yin Y, Zhang Q, Zhang Y, Zhang Y, Xu B, Gong P. The Tsinghua—Lancet Commission on healthy cities in China: unlocking the power of cities for a healthy China. Lancet. 2018;391:2140–84.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    United Nations DoEaSA, Population Division (2017). 2017. World population prospects: the 2017 revision.Google Scholar
  55. 55.
    Sherwood SC, Huber M. An adaptability limit to climate change due to heat stress. Proc Natl Acad Sci U S A. 2010;107:9552–5.PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Hawks J, Wang ET, Cochran GM, Harpending HC, Moyzis RK. Recent acceleration of human adaptive evolution. Proc Natl Acad Sci U S A. 2007;104:20753–8.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Kjellstrom T, Holmer I, Lemke B. Workplace heat stress, health and productivity—an increasing challenge for low and middle-income countries during climate change. Glob Health Action. 2009;2:46–51.Google Scholar
  58. 58.
    Zander KK, Botzen WJW, Oppermann E, Kjellstrom T, Garnett ST. Heat stress causes substantial labour productivity loss in Australia. Nat Clim Chang. 2015;5:647.CrossRefGoogle Scholar
  59. 59.
    McMichael AJ, Dear KB. Climate change: heat, health, and longer horizons. Proc Natl Acad Sci U S A. 2010;107:9483–4.PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Huang C, Vaneckova P, Wang X, Fitzgerald G, Guo Y, Tong S. Constraints and barriers to public health adaptation to climate change: a review of the literature. Am J Prev Med. 2011;40:183–90.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Huang C, Barnett AG, Xu Z, Chu C, Wang X, Turner LR, Tong S. Managing the health effects of temperature in response to climate change: challenges ahead. Environ Health Perspect. 2013;121:415–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Bernard SM, McGeehin MA. Municipal heat wave response plans. Am J Public Health. 2004;94:1520–2.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Matthies F, Menne B. Prevention and management of health hazards related to heatwaves. Int J Circumpolar Health. 2009;68:8–22.PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Chau PH, Chan KC, Woo J. Hot weather warning might help to reduce elderly mortality in Hong Kong. Int J Biometeorol. 2009;53:461–8.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Fouillet A, Rey G, Wagner V, Laaidi K, Empereur-Bissonnet P, Le Tertre A, Frayssinet P, Bessemoulin P, Laurent F, De Crouy-Chanel P, Jougla E, Hemon D. Has the impact of heat waves on mortality changed in France since the European heat wave of summer 2003? A study of the 2006 heat wave. Int J Epidemiol. 2008;37:309–17.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Tan J, Zheng Y, Song G, Kalkstein LS, Kalkstein AJ, Tang X. Heat wave impacts on mortality in Shanghai, 1998 and 2003. Int J Biometeorol. 2007;51:193–200.PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Price K, Perron S, King N. Implementation of the Montreal heat response plan during the 2010 heat wave. Can J Public Health. 2013;104:e96–100.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Benmarhnia T, Bailey Z, Kaiser D, Auger N, King N, Kaufman JS. A difference-in-differences approach to assess the effect of a heat action plan on heat-related mortality, and differences in effectiveness according to sex, age, and socioeconomic status (Montreal, Quebec). Environ Health Perspect. 2016;124:1694–9.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Price K, Benmarhnia T, Gaudet J, Kaiser D, Sadoine ML, Perron S, Smargiassi A. The Montreal heat response plan: evaluation of its implementation towards healthcare professionals and vulnerable populations. Can J Public Health. 2018;109:108–16.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Hajat S, Sheridan SC, Allen MJ, Pascal M, Laaidi K, Yagouti A, Bickis U, Tobias A, Bourque D, Armstrong BG, Kosatsky T. Heat-health warning systems: a comparison of the predictive capacity of different approaches to identifying dangerously hot days. Am J Public Health. 2010;100:1137–44.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    O’Neill MS, Ebi KL. Temperature extremes and health: impacts of climate variability and change in the United States. J Occup Environ Med. 2009;51:13–25.CrossRefGoogle Scholar
  72. 72.
    Toloo GS, Fitzgerald G, Aitken P, Verrall K, Tong S. Are heat warning systems effective? Environ Health. 2013;12:27.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Lowe D, Ebi KL, Forsberg B. Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health. 2011;8:4623–48.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    WHO. Improving public health responses to extreme weather/heat-waves: Euroheat: technical summary. Copenhagen: WHO Regional Office for Europe; 2009.Google Scholar
  75. 75.
    Kalkstein L. Heat health warning systems: definition and methodology. Geneva: WHO; 2012.Google Scholar
  76. 76.
    Gosling SN, Lowe JA, McGregor GR, Pelling M, Malamud BD. Associations between elevated atmospheric temperature and human mortality: a critical review of the literature. Clim Chang. 2009;92:299–341.CrossRefGoogle Scholar
  77. 77.
    Tan J, Kalkstein LS, Huang J, Lin S, Yin H, Shao D. An operational heat/health warning system in Shanghai. Int J Biometeorol. 2004;48:157–62.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Lane K, Wheeler K, Charles-Guzman K, Ahmed M, Blum M, Gregory K, Graber N, Clark N, Matte T. Extreme heat awareness and protective behaviors in New York city. J Urban Health. 2014;91:403–14.PubMedCrossRefGoogle Scholar
  79. 79.
    Sheridan SC. A survey of public perception and response to heat warnings across four North American cities: an evaluation of municipal effectiveness. Int J Biometeorol. 2007;52:3–15.PubMedCrossRefGoogle Scholar
  80. 80.
    Stuart K, Mahmood MA, Clark L, Pace R. Health education and a co-ordinated response system to support vulnerable people during heat waves. Aust N Z J Public Health. 2011;35:394–5; discussion 395.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Smith E, Morgans A, Qureshi K, Burkle FM, Archer F. Paramedics’ perceptions of risk and willingness to work during disasters. Aust J Emerg Manag. 2009;24(3):21–7.Google Scholar
  82. 82.
    Hajat S, Kosatky T. Heat-related mortality: a review and exploration of heterogeneity. J Epidemiol Community Health. 2010;64:753–60.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Kovats RS, Hajat S. Heat stress and public health: a critical review. Annu Rev Public Health. 2008;29:41–55.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Bell E. Readying health services for climate change: a policy framework for regional development. Am J Public Health. 2011;101:804–13.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hajat S, O’Connor M, Kosatsky T. Health effects of hot weather: from awareness of risk factors to effective health protection. Lancet. 2010;375:856–63.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Ravanelli NM, Hodder SG, Havenith G, Jay O. Heart rate and body temperature responses to extreme heat and humidity with and without electric fans. JAMA. 2015;313:724.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Ma W, Chen R, Kan H. Temperature-related mortality in 17 large Chinese cities: how heat and cold affect mortality in China. Environ Res. 2014;134:127–33.PubMedCrossRefGoogle Scholar
  88. 88.
    Ohashi Y, Genchi Y, Kondo H, Kikegawa Y, Yoshikado H, Hirano Y. Influence of air-conditioning waste heat on air temperature in Tokyo during summer: numerical experiments using an urban canopy model coupled with a building energy model. J Appl Meteorol Climatol. 2007;46:66–81.CrossRefGoogle Scholar
  89. 89.
    Lin S, Fletcher BA, Luo M, Chinery R, Hwang SA. Health impact in New York city during the northeastern blackout of 2003. Public Health Rep. 2011;126:384–93.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Stone B, Hess JJ, Frumkin H. Urban form and extreme heat events: are sprawling cities more vulnerable to climate change than compact cities? Environ Health Perspect. 2010;118:1425–8.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Ahmed KS. Comfort in urban spaces: defining the boundaries of outdoor thermal comfort for the tropical urban environments. Energ Buildings. 2003;35:103–10.CrossRefGoogle Scholar
  92. 92.
    Lin TP. Thermal perception, adaptation and attendance in a public square in hot and humid regions. Build Environ. 2009;44:2017–26.CrossRefGoogle Scholar
  93. 93.
    Boone-Heinonen J, Casanova K, Richardson AS, Gordon-Larsen P. Where can they play? Outdoor spaces and physical activity among adolescents in U.S. urbanized areas. Prev Med. 2010;51:295–8.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    van den Berg AE, Maas J, Verheij RA, Groenewegen PP. Green space as a buffer between stressful life events and health. Soc Sci Med. 2010;70:1203–10.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Yan H, Wu F, Dong L. Influence of a large urban park on the local urban thermal environment. Sci Total Environ. 2018;622–623:882–91.PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Hunter RF, Christian H, Veitch J, Astell-Burt T, Hipp JA, Schipperijn J. The impact of interventions to promote physical activity in urban green space: a systematic review and recommendations for future research. Soc Sci Med. 2015;124:246–56.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Schipperijn J, Bentsen P, Troelsen J, Toftager M, Stigsdotter UK. Associations between physical activity and characteristics of urban green space. Urban For Urban Gree. 2013;12:109–16.CrossRefGoogle Scholar
  98. 98.
    Monninkhof EM, Elias SG, Vlems FA, van der Tweel I, Schuit AJ, Voskuil DW, van Leeuwen FE, TFPAC. Physical activity and breast cancer: a systematic review. Epidemiology. 2007;18:137–57.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Woodcock J, Edwards P, Tonne C, Armstrong BG, Ashiru O, Banister D, Beevers S, Chalabi Z, Chowdhury Z, Cohen A, Franco OH, Haines A, Hickman R, Lindsay G, Mittal I, Mohan D, Tiwari G, Woodward A, Roberts I. Public health benefits of strategies to reduce greenhouse-gas emissions: urban land transport. Lancet. 2009;374:1930–43.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Wolf T, McGregor G. The development of a heat wave vulnerability index for London, United Kingdom. Weather Clim Extrem. 2013;1:59–68.CrossRefGoogle Scholar
  101. 101.
    Zhu Q, Liu T, Lin H, Xiao J, Luo Y, Zeng W, Zeng S, Wei Y, Chu C, Baum S, Du Y, Ma W. The spatial distribution of health vulnerability to heat waves in Guangdong province, China. Glob Health Action. 2014;7:25051.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Turner LR, Connell D, Tong S. Exposure to hot and cold temperatures and ambulance attendances in Brisbane, Australia: a time-series study. BMJ Open. 2012;2:e001074.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Leonardi GS, Hajat S, Kovats RS, Smith GE, Cooper D, Gerard E. Syndromic surveillance use to detect the early effects of heat-waves: an analysis of NHS direct data in England. Soz Praventivmed. 2006;51:194–201.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Yiling He
    • 1
  • Rui Ma
    • 1
  • Meng Ren
    • 1
  • Wenmin Liao
    • 1
  • Na Zhang
    • 1
  • Yanan Su
    • 1
  • Cho Kwong Charlie Lam
    • 2
  • Suhan Wang
    • 1
  • Cunrui Huang
    • 1
    Email author
  1. 1.School of Public HealthSun Yat-sen UniversityGuangzhouChina
  2. 2.School of Atmospheric SciencesSun Yat-sen UniversityGuangzhouChina

Personalised recommendations