Future Prospects of SiC Thermoelectrical Sensing Devices

  • Toan DinhEmail author
  • Nam-Trung Nguyen
  • Dzung Viet Dao
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This chapter presents the future prospect of SiC MEMS thermoelectrical sensing devices in terms of the development of new platform and integration capability of SiC with other materials for high-temperature applications. The chapter also describes the possibility of using the thermoelectrical effect in SiC for possible applications in sensing systems, including resonant sensors. Challenges and opportunities for the development of SiC thermal devices in high-temperature applications will also be discussed.


SiC on insulator SiC integrated devices High-temperature SiC sensors 


  1. 1.
    Q. Wahab, A. Ellison, A. Henry, E. Janzén, C. Hallin, J. Di Persio et al., Influence of epitaxial growth and substrate-induced defects on the breakdown of 4H–SiC Schottky diodes. Appl. Phys. Lett. 76, 2725–2727 (2000)CrossRefGoogle Scholar
  2. 2.
    L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner et al., Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 °C. Thin Solid Films 519, 6443–6446 (2011)CrossRefGoogle Scholar
  3. 3.
    L. Wang, S. Dimitrijev, J. Han, P. Tanner, A. Iacopi, L. Hold, Demonstration of p-type 3C–SiC grown on 150 mm Si (1 0 0) substrates by atomic-layer epitaxy at 1000 °C. J. Cryst. Growth 329, 67–70 (2011)CrossRefGoogle Scholar
  4. 4.
    J.Y. Seto, The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247–5254 (1975)CrossRefGoogle Scholar
  5. 5.
    M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments. Proc. IEEE 86, 1594–1609 (1998)CrossRefGoogle Scholar
  6. 6.
    M. Mehregany, C.A. Zorman, SiC MEMS: opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518–524 (1999)CrossRefGoogle Scholar
  7. 7.
    M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Ind. Electron. 48, 249–257 (2001)CrossRefGoogle Scholar
  8. 8.
    L. Chen, M. Mehregany, A silicon carbide capacitive pressure sensor for high temperature and harsh environment applications, in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International (2007), pp. 2597–2600Google Scholar
  9. 9.
    C. Dezauzier, N. Becourt, G. Arnaud, S. Contreras, J. Ponthenier, J. Camassel et al., Electrical characterization of SiC for high-temperature thermal-sensor applications. Sens. Actuators, A 46, 71–75 (1995)CrossRefGoogle Scholar
  10. 10.
    H.-P. Phan, T. Dinh, T. Kozeki, A. Qamar, T. Namazu, S. Dimitrijev, et al., Piezoresistive effect in p-type 3C-SiC at high temperatures characterized using Joule heating. Sci. Rep. 6 (2016)Google Scholar
  11. 11.
    V. Balakrishnan, T. Dinh, H.-P. Phan, T. Kozeki, T. Namazu, D.V. Dao et al., Steady-state analytical model of suspended p-type 3C–SiC bridges under consideration of Joule heating. J. Micromech. Microeng. 27, 075008 (2017)CrossRefGoogle Scholar
  12. 12.
    A.R.M. Foisal, H.-P. Phan, T. Dinh, T.-K. Nguyen, N.-T. Nguyen, D.V. Dao, A rapid and cost-effective metallization technique for 3C–SiC MEMS using direct wire bonding. RSC Adv. 8, 15310–15314 (2018)CrossRefGoogle Scholar
  13. 13.
    T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao, N.-T. Nguyen, An on-chip SiC MEMS device with integrated heating, sensing and microfluidic cooling systems. Adv. Mater. Interfaces 1, 1 (2018)Google Scholar
  14. 14.
    H.-P. Phan, D.V. Dao, L. Wang, T. Dinh, N.-T. Nguyen, A. Qamar et al., The effect of strain on the electrical conductance of p-type nanocrystalline silicon carbide thin films. J. Mater. Chem. C 3, 1172–1176 (2015)CrossRefGoogle Scholar
  15. 15.
    A. Qamar, H.-P. Phan, J. Han, P. Tanner, T. Dinh, L. Wang et al., The effect of device geometry and crystal orientation on the stress-dependent offset voltage of 3C–SiC (100) four terminal devices. J. Mater. Chem. C 3, 8804–8809 (2015)CrossRefGoogle Scholar
  16. 16.
    A. Qamar, D.V. Dao, J. Han, H.-P. Phan, A. Younis, P. Tanner et al., Pseudo-Hall effect in single crystal 3C-SiC (111) four-terminal devices. J. Mater. Chem. C 3, 12394–12398 (2015)CrossRefGoogle Scholar
  17. 17.
    H.-P. Phan, T. Dinh, T. Kozeki, T.-K. Nguyen, A. Qamar, T. Namazu et al., The piezoresistive effect in top-down fabricated p-type 3C-SiC nanowires. IEEE Electron Device Lett. 37, 1029–1032 (2016)CrossRefGoogle Scholar
  18. 18.
    A. Qamar, H.-P. Phan, T. Dinh, L. Wang, S. Dimitrijev, D.V. Dao, Piezo-Hall effect in single crystal p-type 3C–SiC (100) thin film grown by low pressure chemical vapor deposition. RSC Adv. 6, 31191–31195 (2016)CrossRefGoogle Scholar
  19. 19.
    H.-P. Phan, T. Dinh, T. Kozeki, T.-K. Nguyen, A. Qamar, T. Namazu et al., Nano strain-amplifier: making ultra-sensitive piezoresistance in nanowires possible without the need of quantum and surface charge effects. Appl. Phys. Lett. 109, 123502 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Qamar, D.V. Dao, J.S. Han, A. Iacopi, T. Dinh, H. P. Phan, et al., Pseudo-hall effect in single crystal n-type 3C-SiC (100) thin film, in Key Engineering Materials (2017), pp. 3–7CrossRefGoogle Scholar
  21. 21.
    H.-P. Phan, H.-H. Cheng, T. Dinh, B. Wood, T.-K. Nguyen, F. Mu et al., Single-crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications. ACS Appl. Mater. Interfaces 9, 27365–27371 (2017)CrossRefGoogle Scholar
  22. 22.
    T. Dinh, H.-P. Phan, T.-K. Nguyen, V. Balakrishnan, H.-H. Cheng, L. Hold et al., Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures. IEEE Electron Device Lett. 39, 580–583 (2018)CrossRefGoogle Scholar
  23. 23.
    V. Balakrishnan, T. Dinh, H.-P. Phan, D.V. Dao, N.-T. Nguyen, Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology. Sens. Actuators, A (2018)CrossRefGoogle Scholar
  24. 24.
    V. Balakrishnan, H.-P. Phan, T. Dinh, D.V. Dao, N.-T. Nguyen, Thermal flow sensors for harsh environments. Sensors 17, 2061 (2017)CrossRefGoogle Scholar
  25. 25.
    D.G. Senesky, B. Jamshidi, K.B. Cheng, A.P. Pisano, Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sens. J. 9, 1472–1478 (2009)CrossRefGoogle Scholar
  26. 26.
    T.-K. Nguyen, H.-P. Phan, T. Dinh, A.R.M. Foisal, N.-T. Nguyen, D. Dao, High-temperature tolerance of piezoresistive effect in p-4H-SiC for harsh environment sensing. J. Mater. Chem. C (2018)Google Scholar
  27. 27.
    A. Zubrilov, V. Nikolaev, D. Tsvetkov, V. Dmitriev, K. Irvine, J. Edmond et al., Spontaneous and stimulated emission from photopumped GaN grown on SiC. Appl. Phys. Lett. 67, 533–535 (1995)CrossRefGoogle Scholar
  28. 28.
    E. Kalinina, N. Kuznetsov, V. Dmitriev, K. Irvine, C. Carter, Schottky barriers on n-GaN grown on SiC. J. Electron. Mater. 25, 831–834 (1996)CrossRefGoogle Scholar
  29. 29.
    M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe. (Wiley, 2001)Google Scholar
  30. 30.
    D. Zhao, S. Xu, M. Xie, S. Tong, H. Yang, Stress and its effect on optical properties of GaN epilayers grown on Si (111), 6H-SiC (0001), and c-plane sapphire. Appl. Phys. Lett. 83, 677–679 (2003)CrossRefGoogle Scholar
  31. 31.
    J. Edmond, A. Abare, M. Bergman, J. Bharathan, K.L. Bunker, D. Emerson et al., High efficiency GaN-based LEDs and lasers on SiC. J. Cryst. Growth 272, 242–250 (2004)CrossRefGoogle Scholar
  32. 32.
    V. Härle, B. Hahn, H.J. Lugauer, S. Bader, G. Brüderl, J. Baur, et al., GaN‐based LEDs and lasers on SiC. Phys. Status Solidi (a) 180, 5–13 (2000)Google Scholar
  33. 33.
    M.A. Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska et al., AlGaN/GaN metal–oxide–semiconductor heterostructure field-effect transistors on SiC substrates. Appl. Phys. Lett. 77, 1339–1341 (2000)CrossRefGoogle Scholar
  34. 34.
    M. Shur, GaN based transistors for high power applications1. Solid-State Electron. 42, 2131–2138 (1998)CrossRefGoogle Scholar
  35. 35.
    S. Madhusoodhanan, S. Koukourinkova, T. White, Z. Chen, Y. Zhao, M.E. Ware, Highly linear temperature sensor using GaN-on-SiC heterojunction diode for harsh environment applications, in 2016 IEEE 4th Workshop on Wide Bandgap Power Devices and Applications (WiPDA) (2016), pp. 171–175Google Scholar
  36. 36.
    S. Madhusoodhanan, S. Sandoval, Y. Zhao, M. Ware, Z. Chen, A highly linear temperature sensor using GaN-on-SiC heterojunction diode for high power applications. IEEE Electron Device Lett. 38, 1105–1108 (2017)CrossRefGoogle Scholar
  37. 37.
    M. Berthou, P. Godignon, J. Millán, Monolithically integrated temperature sensor in silicon carbide power MOSFETs. IEEE Trans. Power Electron. 29, 4970–4977 (2014)CrossRefGoogle Scholar
  38. 38.
    S. Rao, G. Pangallo, F.G. Della Corte, Highly linear temperature sensor based on 4H-silicon carbide pin diodes. IEEE Electron Device Lett. 36, 1205–1208 (2015)CrossRefGoogle Scholar
  39. 39.
    S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)CrossRefGoogle Scholar
  40. 40.
    G. Brezeanu, M. Badila, F. Draghici, R. Pascu, G. Pristavu, F. Craciunoiu, et al., High temperature sensors based on silicon carbide (SiC) devices, in 2015 International Semiconductor Conference (CAS) (2015), pp. 3–10Google Scholar
  41. 41.
    M. Othman, A. Brunnschweiler, Electrothermally excited silicon beam mechanical resonators. Electron. Lett. 23, 728–730 (1987)CrossRefGoogle Scholar
  42. 42.
    E. Mastropaolo, R. Cheung, Electrothermal actuation studies on silicon carbide resonators. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Proc. Meas. Phenom. 26, 2619–2623 (2008)Google Scholar
  43. 43.
    B. Svilicic, E. Mastropaolo, B. Flynn, R. Cheung, Electrothermally actuated and piezoelectrically sensed silicon carbide tunable MEMS resonator. IEEE Electron Device Lett. 33, 278–280 (2012)CrossRefGoogle Scholar
  44. 44.
    E. Mastropaolo, G.S. Wood, I. Gual, P. Parmiter, R. Cheung, Electrothermally actuated silicon carbide tunable MEMS resonators. J. Microelectromech. Syst. 21, 811–821 (2012)CrossRefGoogle Scholar
  45. 45.
    T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Namazu, Y. Zhu, et al., Design and fabrication of electrothermal SiC nanoresonators for high-resolution nanoparticle sensing, in 2016 IEEE 16th International Conference on Nanotechnology (IEEE-NANO) (2016), pp. 160–163Google Scholar
  46. 46.
    E. Mastropaolo, I. Gual, R. Cheung, Silicon carbide electrothermal mixer-filters. Electron. Lett. 46, 62–63 (2010)CrossRefGoogle Scholar
  47. 47.
    G. Wood, I. Gual, P. Parmiter, R. Cheung, Temperature stability of electro-thermally and piezoelectrically actuated silicon carbide MEMS resonators. Microelectron. Reliab. 50, 1977–1983 (2010)CrossRefGoogle Scholar
  48. 48.
    T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. (2017)Google Scholar
  49. 49.
    N. Zhang, C.-M. Lin, D.G. Senesky, A.P. Pisano, Temperature sensor based on 4H-silicon carbide pn diode operational from 20 °C to 600 °C. Appl. Phys. Lett. 104, 073504 (2014)CrossRefGoogle Scholar
  50. 50.
    Y. Furubayashi, T. Tanehira, A. Yamamoto, K. Yonemori, S. Miyoshi, S.-I. Kuroki, Peltier effect of silicon for cooling 4H-SiC-based power devices. ECS Trans. 80, 77–85 (2017)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Queensland Micro- and Nanotechnology Centre (QMNC)Griffth UniversityBrisbaneAustralia
  2. 2.Queensland Micro- and Nanotechnology Centre (QMNC)Griffith UniversityBrisbaneAustralia
  3. 3.School of Engineering and Built EnvironmentGriffith UniversitySouthportAustralia

Personalised recommendations