Advertisement

Applications of Thermoelectrical Effect in SiC

  • Toan Dinh
  • Nam-Trung Nguyen
  • Dzung Viet Dao
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter describes the applications of the thermoelectrical effect in silicon carbide for a wide range of applications in harsh environments. The thermoresistive effect in a single SiC layer for temperature sensing is known as thermistor, or resistive temperature detector will be mentioned. The temperature sensing in multiple SiC layers will also be discussed. The chapter also presents the application of SiC for thermal sensors based on the Joule heating effect such as thermal flow sensors, convective accelerometers and convective gyroscopes. Other applications towards gas sensing and cooling of MEMS devices are described.

Keywords

Temperature sensors Thermal flow sensors Convective accelerometers Convective gyroscopes Gas sensors SiC cooling devices 

References

  1. 1.
    T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. (2017)Google Scholar
  2. 2.
    R.C.S. Freire, S.Y.C. Catunda, B.A. Luciano, Applications of thermoresistive sensors using the electric equivalence principle. IEEE Trans. Instrum. Meas. 58, 1823–1830 (2009)CrossRefGoogle Scholar
  3. 3.
    T. Nagai, K. Yamamoto, I. Kobayashi, Rapid response SiC thin-film thermistor. Rev. Sci. Instrum. 55, 1163–1165 (1984)CrossRefGoogle Scholar
  4. 4.
    T. Nagai, M. Itoh, SiC thin-film thermistors. IEEE Trans. Ind. Appl. 26, 1139–1143 (1990)CrossRefGoogle Scholar
  5. 5.
    E.A. de Vasconcelos, W.Y. Zhang, H. Uchida, T. Katsube, Potential of high-purity polycrystalline silicon carbide for thermistor applications. Jpn. J. Appl. Phys. 37, 5078 (1998)CrossRefGoogle Scholar
  6. 6.
    E.A. de Vasconcelos, S. Khan, W. Zhang, H. Uchida, T. Katsube, Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sens. Actuators A 83, 167–171 (2000)CrossRefGoogle Scholar
  7. 7.
    N. Boltovets, V. Kholevchuk, R. Konakova, Y.Y. Kudryk, P. Lytvyn, V. Milenin et al., A silicon carbide thermistor. Semicond. Phys. Quantum Electron. Optoelectron. 9, 67–70 (2006)Google Scholar
  8. 8.
    C. Chen, Evaluation of resistance–temperature calibration equations for NTC thermistors. Measurement 42, 1103–1111 (2009)CrossRefGoogle Scholar
  9. 9.
    A. Feteira, Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J. Am. Ceram. Soc. 92, 967–983 (2009)CrossRefGoogle Scholar
  10. 10.
    H. Al-Mumen, F. Rao, L. Dong, W. Li, Design, fabrication, and characterization of graphene thermistor, in 2013 8th IEEE International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (2013), pp. 1135–1138Google Scholar
  11. 11.
    C. Yan, J. Wang, P.S. Lee, Stretchable graphene thermistor with tunable thermal index. ACS Nano 9, 2130–2137 (2015)CrossRefGoogle Scholar
  12. 12.
    V. Mitin, V. Kholevchuk, A. Semenov, A. Kozlovskii, N. Boltovets, V. Krivutsa et al., Nanocrystalline SiC film thermistors for cryogenic applications. Rev. Sci. Instrum. 89, 025004 (2018)CrossRefGoogle Scholar
  13. 13.
    H. Chang, X. Gong, S. Wang, P. Zhou, W. Yuan, On improving the performance of a triaxis vortex convective gyroscope through suspended silicon thermistors. IEEE Sens. J. 15, 946–955 (2015)CrossRefGoogle Scholar
  14. 14.
    G.S. Deep, R. Freire, P. Lobo, J.R. Neto, A. Lima, Dynamic response of thermoresistive sensors. IEEE Trans. Instrum. Meas. 41, 815–819 (1992)CrossRefGoogle Scholar
  15. 15.
    M. Prudenziati, A. Taroni, G. Zanarini, Semiconductor sensors: I—Thermoresistive devices. IEEE Trans. Ind. Electron. Control Instrum., 407–414 (1970)CrossRefGoogle Scholar
  16. 16.
    P. Fau, J. Bonino, J. Demai, A. Rousset, Thin films of nickel manganese oxide for NTC thermistor applications. Appl. Surf. Sci. 65, 319–324 (1993)CrossRefGoogle Scholar
  17. 17.
    A. Feltz, W. Pölzl, Spinel forming ceramics of the system FexNiyMn3–x–yO4 for high temperature NTC thermistor applications. J. Eur. Ceram. Soc. 20, 2353–2366 (2000)CrossRefGoogle Scholar
  18. 18.
    Z. Yue, J. Shan, X. Qi, X. Wang, J. Zhou, Z. Gui et al., Synthesis of nanocrystalline manganite powders via a gel auto-combustion process for NTC thermistor applications. Mater. Sci. Eng., B 99, 217–220 (2003)CrossRefGoogle Scholar
  19. 19.
    K. Wasa, T. Tohda, Y. Kasahara, S. Hayakawa, Highly-reliable temperature sensor using rf-sputtered SiC thin film. Rev. Sci. Instrum. 50, 1084–1088 (1979)CrossRefGoogle Scholar
  20. 20.
    E. Obermeier, High temperature microsensors based on polycrystalline diamond thin films, in The 8th International Conference on Solid-State Sensors and Actuators, 1995 and Eurosensors IX. Transducers’ 95 (1995), pp. 178–181Google Scholar
  21. 21.
    M.R. Werner, W.R. Fahrner, Review on materials, microsensors, systems and devices for high-temperature and harsh-environment applications. IEEE Trans. Industr. Electron. 48, 249–257 (2001)CrossRefGoogle Scholar
  22. 22.
    N. Zhang, C.-M. Lin, D.G. Senesky, A.P. Pisano, Temperature sensor based on 4H-silicon carbide pn diode operational from 20 C to 600 C. Appl. Phys. Lett. 104, 073504 (2014)CrossRefGoogle Scholar
  23. 23.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006)CrossRefGoogle Scholar
  24. 24.
    D. Peters, R. Schörner, K.-H. Hölzlein, P. Friedrichs, Planar aluminum-implanted 1400 V 4H silicon carbide pn diodes with low on resistance. Appl. Phys. Lett. 71, 2996–2997 (1997)CrossRefGoogle Scholar
  25. 25.
    S. Rao, G. Pangallo, F. Pezzimenti, F.G. Della Corte, High-performance temperature sensor based on 4H-SiC Schottky diodes. IEEE Electron Device Lett. 36, 720–722 (2015)CrossRefGoogle Scholar
  26. 26.
    S. Rao, G. Pangallo, F.G. Della Corte, Highly linear temperature sensor based on 4H-silicon carbide pin diodes. IEEE Electron Device Lett. 36, 1205–1208 (2015)CrossRefGoogle Scholar
  27. 27.
    G. Chen, S. Bai, A. Liu, L. Wang, R.H. Huang, Y.H. Tao, et al., Fabrication and application of 1.7 kV SiC-Schottky diodes, in Materials Science Forum (2015), pp. 579–582CrossRefGoogle Scholar
  28. 28.
    J.B. Casady, W.C. Dillard, R.W. Johnson, U. Rao, A hybrid 6H-SiC temperature sensor operational from 25/spl deg/C to 500/spl deg/C. IEEE Trans. Compon. Packag. Manuf. Technol. Part A 19, 416–422 (1996)CrossRefGoogle Scholar
  29. 29.
    S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)CrossRefGoogle Scholar
  30. 30.
    S.B. Hou, P.E. Hellström, C.M. Zetterling, M. Östling, 4H-SiC PIN diode as high temperature multifunction sensor, in Materials Science Forum (2017), pp. 630–633CrossRefGoogle Scholar
  31. 31.
    J.T. Kuo, L. Yu, E. Meng, Micromachined thermal flow sensors—a review. Micromachines 3, 550–573 (2012)CrossRefGoogle Scholar
  32. 32.
    S.C. Bailey, G.J. Kunkel, M. Hultmark, M. Vallikivi, J.P. Hill, K.A. Meyer et al., Turbulence measurements using a nanoscale thermal anemometry probe. J. Fluid Mech. 663, 160–179 (2010)CrossRefGoogle Scholar
  33. 33.
    S.-T. Hung, S.-C. Wong, W. Fang, The development and application of microthermal sensors with a mesh-membrane supporting structure. Sens. Actuators, A 84, 70–75 (2000)CrossRefGoogle Scholar
  34. 34.
    C. Lyons, A. Friedberger, W. Welser, G. Muller, G. Krotz, R. Kassing, A high-speed mass flow sensor with heated silicon carbide bridges, in The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings (1998), pp. 356–360Google Scholar
  35. 35.
    A.S. Cubukcu, E. Zernickel, U. Buerklin, G.A. Urban, A 2D thermal flow sensor with sub-mW power consumption. Sens. Actuators, A 163, 449–456 (2010)CrossRefGoogle Scholar
  36. 36.
    R. Ahrens, K. Schlote-Holubek, A micro flow sensor from a polymer for gases and liquids. J. Micromech. Microeng. 19, 074006 (2009)CrossRefGoogle Scholar
  37. 37.
    R.J. Adamec, D.V. Thiel, Self heated thermo-resistive element hot wire anemometer. IEEE Sens. J. 10, 847–848 (2010)CrossRefGoogle Scholar
  38. 38.
    C. Li, P.-M. Wu, J. Han, C.H. Ahn, A flexible polymer tube lab-chip integrated with microsensors for smart microcatheter. Biomed. Microdevice 10, 671–679 (2008)CrossRefGoogle Scholar
  39. 39.
    P. Bruschi, M. Dei, M. Piotto, A low-power 2-D wind sensor based on integrated flow meters. IEEE Sens. J. 9, 1688–1696 (2009)CrossRefGoogle Scholar
  40. 40.
    F. Keplinger, J. Kuntner, A. Jachimowicz, F. Kohl, Sensitive measurement of flow velocity and flow direction using a circular thermistor array, in GMe Workshop (2006), pp. 133–137Google Scholar
  41. 41.
    J. Robadey, O. Paul, H. Baltes, Two-dimensional integrated gas flow sensors by CMOS IC technology. J. Micromech. Microeng. 5, 243 (1995)CrossRefGoogle Scholar
  42. 42.
    J.-G. Lee, M.I. Lei, S.-P. Lee, S. Rajgopal, M. Mehregany, Micro flow sensor using polycrystalline silicon carbide. J. Sensor Sci. Technol. 18, 147–153 (2009)CrossRefGoogle Scholar
  43. 43.
    H. Berthet, J. Jundt, J. Durivault, B. Mercier, D. Angelescu, Time-of-flight thermal flowrate sensor for lab-on-chip applications. Lab Chip 11, 215–223 (2011)CrossRefGoogle Scholar
  44. 44.
    E. Meng, P.-Y. Li, Y.-C. Tai, A biocompatible Parylene thermal flow sensing array. Sens. Actuators, A 144, 18–28 (2008)CrossRefGoogle Scholar
  45. 45.
    T. Dinh, H.-P. Phan, D.V. Dao, P. Woodfield, A. Qamar, N.-T. Nguyen, Graphite on paper as material for sensitive thermoresistive sensors. J. Mater. Chem. C 3, 8776–8779 (2015)CrossRefGoogle Scholar
  46. 46.
    T. Dinh, H.-P. Phan, T.-K. Nguyen, A. Qamar, A.R.M. Foisal, T.N. Viet et al., Environment-friendly carbon nanotube based flexible electronics for noninvasive and wearable healthcare. J. Mater. Chem. C 4, 10061–10068 (2016)CrossRefGoogle Scholar
  47. 47.
    T. Dinh, H.-P. Phan, T.-K. Nguyen, A. Qamar, P. Woodfield, Y. Zhu et al., Solvent-free fabrication of biodegradable hot-film flow sensor for noninvasive respiratory monitoring. J. Phys. D Appl. Phys. 50, 215401 (2017)CrossRefGoogle Scholar
  48. 48.
    T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: Fundamentals, design considerations, and applications. J. Microelectromech. Syst. 26, 966–986 (2017)CrossRefGoogle Scholar
  49. 49.
    S. Noh, J. Seo, E. Lee, The fabrication by using surface MEMS of 3C-SiC micro-heaters and RTD sensors and their resultant properties. Trans. Electr. Electron. Mater 10, 131–134 (2009)CrossRefGoogle Scholar
  50. 50.
    F. Mailly, A. Giani, R. Bonnot, P. Temple-Boyer, F. Pascal-Delannoy, A. Foucaran et al., Anemometer with hot platinum thin film. Sens. Actuators, A 94, 32–38 (2001)CrossRefGoogle Scholar
  51. 51.
    T. Dinh, H.-P. Phan, T.-K. Nguyen, V. Balakrishnan, H.-H. Cheng, L. Hold et al., Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures. IEEE Electron Device Lett. 39, 580–583 (2018)CrossRefGoogle Scholar
  52. 52.
    V. Balakrishnan, T. Dinh, H.-P. Phan, D.V. Dao, N.-T. Nguyen, Highly sensitive 3C-SiC on glass based thermal flow sensor realized using MEMS technology. Sens. Actuators A Phys. (2018)Google Scholar
  53. 53.
    S. Issa, H. Sturm, W. Lang, Modeling of the response time of thermal flow sensors. Micromachines 2, 385–393 (2011)CrossRefGoogle Scholar
  54. 54.
    C. Sosna, T. Walter, W. Lang, Response time of thermal flow sensors with air as fluid. Sens. Actuators, A 172, 15–20 (2011)CrossRefGoogle Scholar
  55. 55.
    M.I. Lei, Silicon Carbide High Temperature Thermoelectric Flow Sensor (Case Western Reserve University, 2011)Google Scholar
  56. 56.
    A.M. Leung, J. Jones, E. Czyzewska, J. Chen, M. Pascal, Micromachined accelerometer with no proof mass, in Electron Devices Meeting, 1997. IEDM’97. Technical Digest., International (1997), pp. 899–902Google Scholar
  57. 57.
    “Accelerometer,” ed: Google Patents (1948)Google Scholar
  58. 58.
    A. Leung, J. Jones, E. Czyzewska, J. Chen, B. Woods, Micromachined accelerometer based on convection heat transfer, in The Eleventh Annual International Workshop on Micro Electro Mechanical Systems, 1998. MEMS 98. Proceedings (1998), pp. 627–630Google Scholar
  59. 59.
    X. Luo, Y. Yang, F. Zheng, Z. Li, Z. Guo, An optimized micromachined convective accelerometer with no proof mass. J. Micromech. Microeng. 11, 504 (2001)CrossRefGoogle Scholar
  60. 60.
    X. Luo, Z. Li, Z. Guo, Y. Yang, Thermal optimization on micromachined convective accelerometer. Heat Mass Transf. 38, 705–712 (2002)CrossRefGoogle Scholar
  61. 61.
    X. Luo, Z. Li, Z. Guo, Y. Yang, Study on linearity of a micromachined convective accelerometer. Microelectron. Eng. 65, 87–101 (2003)CrossRefGoogle Scholar
  62. 62.
    F. Mailly, A. Giani, A. Martinez, R. Bonnot, P. Temple-Boyer, A. Boyer, Micromachined thermal accelerometer. Sens. Actuators, A 103, 359–363 (2003)CrossRefGoogle Scholar
  63. 63.
    F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy, A. Boyer, Design of a micromachined thermal accelerometer: thermal simulation and experimental results. Microelectron. J. 34, 275–280 (2003)CrossRefGoogle Scholar
  64. 64.
    L. Lin, J. Jones, A liquid-filled buoyancy-driven convective micromachined accelerometer. J. Microelectromech. Syst. 14, 1061–1069 (2005)CrossRefGoogle Scholar
  65. 65.
    V.T. Dau, D.V. Dao, S. Sugiyama, A 2-DOF convective micro accelerometer with a low thermal stress sensing element. Based on work presented at IEEE Sensor 2006: The 5th IEEE Conference on Sensors, Oct. 22–25, 2006, Daegu, Korea. Smart Mater. Struct. 16, 2308 (2007)CrossRefGoogle Scholar
  66. 66.
    B.T. Tung, D.V. Dao, R. Amarasinghe, N. Wada, H. Tokunaga, S. Sugiyama, Development of a 3-DOF micro accelerometer with wireless readout 電気学会論文誌 E (センサ・マイクロマシン部門誌) 128, 235–239 (2008)CrossRefGoogle Scholar
  67. 67.
    S.-H. Tsang, A.H. Ma, K.S. Karim, A. Parameswaran, A.M. Leung, Monolithically fabricated polymermems 3-axis thermal accelerometers designed for automated wirebonder assembly, in IEEE 21st International Conference on Micro Electro Mechanical Systems, 2008. MEMS 2008 (2008), pp. 880–883Google Scholar
  68. 68.
    S.-J. Chen, C.-H. Shen, A novel two-axis CMOS accelerometer based on thermal convection. IEEE Trans. Instrum. Meas. 57, 1572–1577 (2008)CrossRefGoogle Scholar
  69. 69.
    U. Park, D. Kim, J. Kim, I.-K. Moon, C.-H. Kim, Development of a complete dual-axis micromachined convective accelerometer with high sensitivity. Sens. IEEE 2008, 670–673 (2008)Google Scholar
  70. 70.
    J. Bahari, J.D. Jones, A.M. Leung, Sensitivity improvement of micromachined convective accelerometers. J. Microelectromech. Syst. 21, 646–655 (2012)CrossRefGoogle Scholar
  71. 71.
    R. Amarasinghe, D.V. Dao, T. Toriyama, S. Sugiyama, Development of miniaturized 6-axis accelerometer utilizing piezoresistive sensing elements. Sens. Actuators, A 134, 310–320 (2007)CrossRefGoogle Scholar
  72. 72.
    V.T. Dau, D.V. Dao, T. Shiozawa, H. Kumagai, S. Sugiyama, Development of a dual-axis thermal convective gas gyroscope. J. Micromech. Microeng. 16, 1301 (2006)CrossRefGoogle Scholar
  73. 73.
    H. Kumagai, S. Sugiyama, A single-axis thermal convective gas gyroscope. Sens. Mater. 17, 453–463 (2005)Google Scholar
  74. 74.
    D.V. Dao, V.T. Dau, T. Shiozawa, S. Sugiyama, Development of a dual-axis convective gyroscope with low thermal-induced stress sensing element. J. Microelectromech. Syst. 16, 950 (2007)CrossRefGoogle Scholar
  75. 75.
    V.T. Dau, D.V. Dao, T.X. Dinh, T. Shiozawa, S. Sugiyama, Optimization of PZT diaphragm pump for the convective gyroscope. 電気学会論文誌 E (センサ・マイクロマシン部門誌) 127, 347–352 (2007)CrossRefGoogle Scholar
  76. 76.
    V.T. Dau, D.V. Dao, T. Shiozawa, S. Sugiyama, Simulation and fabrication of a convective gyroscope. IEEE Sens. J. 8, 1530–1538 (2008)CrossRefGoogle Scholar
  77. 77.
    A. Harley-Trochimczyk, A. Rao, H. Long, A. Zettl, C. Carraro, R. Maboudian, Low-power catalytic gas sensing using highly stable silicon carbide microheaters. J. Micromech. Microeng. 27, 045003 (2017)CrossRefGoogle Scholar
  78. 78.
    T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao, N.-T. Nguyen, An on-chip SiC MEMS device with integrated heating, sensing and microfluidic cooling systems. Adv. Mater. Interfaces 1, 1 (2018)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Queensland Micro- and Nanotechnology Centre (QMNC)Griffth UniversityBrisbaneAustralia
  2. 2.Queensland Micro- and Nanotechnology Centre (QMNC)Griffith UniversityBrisbaneAustralia
  3. 3.School of Engineering and Built EnvironmentGriffith UniversitySouthportAustralia

Personalised recommendations