Advertisement

Fundamentals of Thermoelectrical Effect in SiC

  • Toan Dinh
  • Nam-Trung Nguyen
  • Dzung Viet Dao
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter presents the fundamentals of thermoresistive effect in different SiC morphologies including single-crystalline cubic SiC, polycrystalline and amorphous SiC. The thermocapacitive and thermoelectric effects are also summarised. In addition, recent advances in the characterisation of the thermoelectrical effect in SiC single and double layers with a heterostructure will be discussed. Other aspects of temperature effect on the electrical properties of SiC are mentioned.

Keywords

Thermoelectrical effect Thermoresistive effect Thermoelectric Thermoelectronic Thermocapacitive 

References

  1. 1.
    B. Verma, S. Sharma, Effect of thermal strains on the temperature coefficient of resistance. Thin Solid Films 5, R44–R46 (1970)CrossRefGoogle Scholar
  2. 2.
    P. Hall, The effect of expansion mismatch on temperature coefficient of resistance of thin films. Appl. Phys. Lett. 12, 212–212 (1968)CrossRefGoogle Scholar
  3. 3.
    T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. (2017)Google Scholar
  4. 4.
    J.T. Kuo, L. Yu, E. Meng, Micromachined thermal flow sensors—a review. Micromachines 3, 550–573 (2012)CrossRefGoogle Scholar
  5. 5.
    F. Warkusz, The size effect and the temperature coefficient of resistance in thin films. J. Phys. D Appl. Phys. 11, 689 (1978)CrossRefGoogle Scholar
  6. 6.
    V.T. Dau, D.V. Dao, T. Shiozawa, H. Kumagai, S. Sugiyama, Development of a dual-axis thermal convective gas gyroscope. J. Micromech. Microeng. 16, 1301 (2006)CrossRefGoogle Scholar
  7. 7.
    T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Namazu, N.-T. Nguyen et al., Thermoresistive properties of p-type 3C–SiC nanoscale thin films for high-temperature MEMS thermal-based sensors. RSC Adv 5, 106083–106086 (2015)CrossRefGoogle Scholar
  8. 8.
    S.O. Kasap, Principles of Electronic Materials and Devices (McGraw-Hill, New York, 2006)Google Scholar
  9. 9.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, New York, 2006CrossRefGoogle Scholar
  10. 10.
    T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. 26, 966–986 (2017)CrossRefGoogle Scholar
  11. 11.
    T. Dinh, D.V. Dao, H.-P. Phan, L. Wang, A. Qamar, N.-T. Nguyen et al., Charge transport and activation energy of amorphous silicon carbide thin film on quartz at elevated temperature. Appl. Phys. Express 8, 061303 (2015)CrossRefGoogle Scholar
  12. 12.
    K. Sasaki, E. Sakuma, S. Misawa, S. Yoshida, S. Gonda, High-temperature electrical properties of 3C-SiC epitaxial layers grown by chemical vapor deposition. Appl. Phys. Lett. 45, 72–73 (1984)CrossRefGoogle Scholar
  13. 13.
    T. Nagai, K. Yamamoto, I. Kobayashi, Rapid response SiC thin-film thermistor. Rev. Sci. Instrum. 55, 1163–1165 (1984)CrossRefGoogle Scholar
  14. 14.
    T. Nagai, M. Itoh, SiC thin-film thermistors. IEEE Trans. Ind. Appl. 26, 1139–1143 (1990)CrossRefGoogle Scholar
  15. 15.
    E.A. de Vasconcelos, S. Khan, W. Zhang, H. Uchida, T. Katsube, Highly sensitive thermistors based on high-purity polycrystalline cubic silicon carbide. Sens. Actuators, A 83, 167–171 (2000)CrossRefGoogle Scholar
  16. 16.
    T. Dinh, H.-P. Phan, T. Kozeki, A. Qamar, T. Fujii, T. Namazu et al., High thermosensitivity of silicon nanowires induced by amorphization. Mater. Lett. 177, 80–84 (2016)CrossRefGoogle Scholar
  17. 17.
    J.Y. Seto, The electrical properties of polycrystalline silicon films. J. Appl. Phys. 46, 5247–5254 (1975)CrossRefGoogle Scholar
  18. 18.
    N.-C. Lu, L. Gerzberg, C.-Y. Lu, J.D. Meindl, A conduction model for semiconductor-grain-boundary-semiconductor barriers in polycrystalline-silicon films. IEEE Trans. Electron Devices 30, 137–149 (1983)CrossRefGoogle Scholar
  19. 19.
    D.M. Kim, A. Khondker, S. Ahmed, R.R. Shah, Theory of conduction in polysilicon: drift-diffusion approach in crystalline-amorphous-crystalline semiconductor system—Part I: Small signal theory. IEEE Trans. Electron Devices 31, 480–493 (1984)CrossRefGoogle Scholar
  20. 20.
    A. Singh, Grain-size dependence of temperature coefficient of resistance of polycrystalline metal films. Proc. IEEE 61, 1653–1654 (1973)CrossRefGoogle Scholar
  21. 21.
    J.T. Irvine, A. Huanosta, R. Valenzuela, A.R. West, Electrical properties of polycrystalline nickel zinc ferrites. J. Am. Ceram. Soc. 73, 729–732 (1990)CrossRefGoogle Scholar
  22. 22.
    A. Singh, Film thickness and grain size diameter dependence on temperature coefficient of resistance of thin metal films. J. Appl. Phys. 45, 1908–1909 (1974)CrossRefGoogle Scholar
  23. 23.
    S. Baranovski, Charge Transport in Disordered Solids with Applications in Electronics, vol. 17 (Wiley, New York, 2006)Google Scholar
  24. 24.
    N.F. Mott, E.A. Davis, Electronic Processes in Non-Crystalline Materials (OUP Oxford, 2012)Google Scholar
  25. 25.
    R. Street, Hydrogenated Amorphous Silicon (Cambridge University, Cambridge, 1991)Google Scholar
  26. 26.
    P. Fenz, H. Muller, H. Overhof, P. Thomas, Activated transport in amorphous semiconductors. II. Interpretation of experimental data. J. Phys. C: Solid State Phys. 18, 3191 (1985)CrossRefGoogle Scholar
  27. 27.
    D. Peters, R. Schörner, K.-H. Hölzlein, P. Friedrichs, Planar aluminum-implanted 1400 V 4H silicon carbide pn diodes with low on resistance. Appl. Phys. Lett. 71, 2996–2997 (1997)CrossRefGoogle Scholar
  28. 28.
    Y.S. Ju, Analysis of thermocapacitive effects in electric double layers under a size modified mean field theory. Appl. Phys. Lett. 111, 173901 (2017)CrossRefGoogle Scholar
  29. 29.
    C.Y. Kwok, K.M. Lin, R.S. Huang, A silicon thermocapacitive flow sensor with frequency modulated output. Sens. Actuators, A 57, 35–39 (1996)CrossRefGoogle Scholar
  30. 30.
    N. Abu-Ageel, M. Aslam, R. Ager, L. Rimai, The Seebeck coefficient of monocrystalline-SiC and polycrystalline-SiC measured at 300–533 K. Semicond. Sci. Technol. 15, 32 (2000)CrossRefGoogle Scholar
  31. 31.
    C.-H. Pai, Thermoelectric properties of p-type silicon carbide, in XVII International Conference on Thermoelectrics, 1998. Proceedings ICT 98 (1998), pp. 582–586Google Scholar
  32. 32.
    S. Fukuda, T. Kato, Y. Okamoto, H. Nakatsugawa, H. Kitagawa, S. Yamaguchi, Thermoelectric properties of single-crystalline SiC and dense sintered SiC for self-cooling devices. Jpn. J. Appl. Phys. 50, 031301 (2011)CrossRefGoogle Scholar
  33. 33.
    P. Wang, Recent advance in thermoelectric devices for electronics cooling, in Encyclopedia of Thermal Packaging: Thermal Packaging Tools (World Scientific, 2015), pp. 145–168Google Scholar
  34. 34.
    K. Nakamura, First-principles simulation on Seebeck coefficient in silicon and silicon carbide nanosheets. Jpn. J. Appl. Phys. 55, 06GJ07 (2016)CrossRefGoogle Scholar
  35. 35.
    Y. Furubayashi, T. Tanehira, A. Yamamoto, K. Yonemori, S. Miyoshi, S.-I. Kuroki, Peltier effect of silicon for cooling 4H-SiC-based power devices. ECS Trans. 80, 77–85 (2017)CrossRefGoogle Scholar
  36. 36.
    T.-K. Nguyen, H.-P. Phan, T. Dinh, T. Toriyama, K. Nakamura, A.R.M. Foisal et al., Isotropic piezoresistance of p-type 4H-SiC in (0001) plane. Appl. Phys. Lett. 113, 012104 (2018)CrossRefGoogle Scholar
  37. 37.
    A.R.M. Foisal, T. Dinh, P. Tanner, H.-P. Phan, T.-K. Nguyen, E.W. Streed et al., Photoresponse of a highly-rectifying 3C-SiC/Si heterostructure under UV and visible illuminations. IEEE Electron Device Lett. (2018)Google Scholar
  38. 38.
    T. Dinh, H.-P. Phan, T.-K. Nguyen, V. Balakrishnan, H.-H. Cheng, L. Hold et al., Unintentionally doped epitaxial 3C-SiC (111) nanothin film as material for highly sensitive thermal sensors at high temperatures. IEEE Electron Device Lett. 39, 580–583 (2018)CrossRefGoogle Scholar
  39. 39.
    J.S. Shor, D. Goldstein, A.D. Kurtz, Characterization of n-type beta-SiC as a piezoresistor. IEEE Trans. Electron Devices 40, 1093–1099 (1993)CrossRefGoogle Scholar
  40. 40.
    J.S. Shor, L. Bemis, A.D. Kurtz, Characterization of monolithic n-type 6H-SiC piezoresistive sensing elements. IEEE Trans. Electron Devices 41, 661–665 (1994)CrossRefGoogle Scholar
  41. 41.
    R.S. Okojie, A.A. Ned, A.D. Kurtz, W.N. Carr, Characterization of highly doped n-and p-type 6H-SiC piezoresistors. IEEE Trans. Electron Devices 45, 785–790 (1998)CrossRefGoogle Scholar
  42. 42.
    T. Abtew, M. Zhang, D. Drabold, Ab initio estimate of temperature dependence of electrical conductivity in a model amorphous material: hydrogenated amorphous silicon. Phys. Rev. B 76, 045212 (2007)CrossRefGoogle Scholar
  43. 43.
    E.A. de Vasconcelos, W.Y. Zhang, H. Uchida, T. Katsube, Potential of high-purity polycrystalline silicon carbide for thermistor applications. Jpn. J. Appl. Phys. 37, 5078 (1998)CrossRefGoogle Scholar
  44. 44.
    K. Wasa, T. Tohda, Y. Kasahara, S. Hayakawa, Highly-reliable temperature sensor using rf-sputtered SiC thin film. Rev. Sci. Instrum. 50, 1084–1088 (1979)CrossRefGoogle Scholar
  45. 45.
    T. Dinh, H.-P. Phan, N. Kashaninejad, T.-K. Nguyen, D.V. Dao, N.-T. Nguyen, An on-chip SiC MEMS device with integrated heating, sensing and microfluidic cooling systems. Adv. Mater. Interfaces 1, 1 (2018)Google Scholar
  46. 46.
    H.-P. Phan, D.V. Dao, P. Tanner, L. Wang, N.-T. Nguyen, Y. Zhu et al., Fundamental piezoresistive coefficients of p-type single crystalline 3C-SiC. Appl. Phys. Lett. 104, 111905 (2014)CrossRefGoogle Scholar
  47. 47.
    S.S. Li, The dopant density and temperature dependence of electron mobility and resistivity in n-type silicon. US Dept. of Commerce, National Bureau of Standards; for sale by the Supt. of Docs., US Govt. Print. Off. (1977)Google Scholar
  48. 48.
    M. Roschke, F. Schwierz, Electron mobility models for 4H, 6H, and 3C SiC [MESFETs]. IEEE Trans. Electron Devices 48, 1442–1447 (2001)CrossRefGoogle Scholar
  49. 49.
    R. Humphreys, D. Bimberg, W. Choyke, Wavelength modulated absorption in SiC. Solid State Commun. 39, 163–167 (1981)CrossRefGoogle Scholar
  50. 50.
    H. Mukaida, H. Okumura, J. Lee, H. Daimon, E. Sakuma, S. Misawa et al., Raman scattering of SiC: estimation of the internal stress in 3C-SiC on Si. J. Appl. Phys. 62, 254–257 (1987)CrossRefGoogle Scholar
  51. 51.
    M. Wieligor, Y. Wang, T. Zerda, Raman spectra of silicon carbide small particles and nanowires. J. Phys.: Condens. Matter 17, 2387 (2005)Google Scholar
  52. 52.
    A. Qamar, H.-P. Phan, J. Han, P. Tanner, T. Dinh, L. Wang et al., The effect of device geometry and crystal orientation on the stress-dependent offset voltage of 3C–SiC (100) four terminal devices. J. Mater. Chem. C 3, 8804–8809 (2015)CrossRefGoogle Scholar
  53. 53.
    H.-P. Phan, H.-H. Cheng, T. Dinh, B. Wood, T.-K. Nguyen, F. Mu et al., Single-crystalline 3C-SiC anodically bonded onto glass: an excellent platform for high-temperature electronics and bioapplications. ACS Appl. Mater. Interfaces. 9, 27365–27371 (2017)CrossRefGoogle Scholar
  54. 54.
    M.S. Raman, T. Kifle, E. Bhattacharya, K. Bhat, Physical model for the resistivity and temperature coefficient of resistivity in heavily doped polysilicon. IEEE Trans. Electron Devices 53, 1885–1892 (2006)CrossRefGoogle Scholar
  55. 55.
    M. Yamanaka, H. Daimon, E. Sakuma, S. Misawa, S. Yoshida, Temperature dependence of electrical properties of n-and p-type 3C-SiC. J. Appl. Phys. 61, 599–603 (1987)CrossRefGoogle Scholar
  56. 56.
    M. Yamanaka, K. Ikoma, Temperature dependence of electrical properties of 3C-SiC (1 1 1) heteroepitaxial films. Physica B 185, 308–312 (1993)CrossRefGoogle Scholar
  57. 57.
    X. Song, J. Michaud, F. Cayrel, M. Zielinski, M. Portail, T. Chassagne et al., Evidence of electrical activity of extended defects in 3C–SiC grown on Si. Appl. Phys. Lett. 96, 142104 (2010)CrossRefGoogle Scholar
  58. 58.
    C. Yan, J. Wang, P.S. Lee, Stretchable graphene thermistor with tunable thermal index. ACS Nano 9, 2130–2137 (2015)CrossRefGoogle Scholar
  59. 59.
    D. Kong, L.T. Le, Y. Li, J.L. Zunino, W. Lee, Temperature-dependent electrical properties of graphene inkjet-printed on flexible materials. Langmuir 28, 13467–13472 (2012)CrossRefGoogle Scholar
  60. 60.
    Q. Gao, H. Meguro, S. Okamoto, M. Kimura, Flexible tactile sensor using the reversible deformation of poly (3-hexylthiophene) nanofiber assemblies. Langmuir 28, 17593–17596 (2012)CrossRefGoogle Scholar
  61. 61.
    X. She, A.Q. Huang, Ó. Lucía, B. Ozpineci, Review of silicon carbide power devices and their applications. IEEE Trans. Industr. Electron. 64, 8193–8205 (2017)CrossRefGoogle Scholar
  62. 62.
    G.L. Harris, Properties of Silicon Carbide (IET, 1995)Google Scholar
  63. 63.
    H.-P. Phan, T. Dinh, T. Kozeki, T.-K. Nguyen, A. Qamar, T. Namazu et al., The piezoresistive effect in top-down fabricated p-type 3C-SiC nanowires. IEEE Electron Device Lett. 37, 1029–1032 (2016)CrossRefGoogle Scholar
  64. 64.
    L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner et al., Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 °C. Thin Solid Films 519, 6443–6446 (2011)CrossRefGoogle Scholar
  65. 65.
    L. Wang, A. Iacopi, S. Dimitrijev, G. Walker, A. Fernandes, L. Hold et al., Misorientation dependent epilayer tilting and stress distribution in heteroepitaxially grown silicon carbide on silicon (111) substrate. Thin Solid Films 564, 39–44 (2014)CrossRefGoogle Scholar
  66. 66.
    V. Afanas’ev, M. Bassler, G. Pensl, M. Schulz, E. Stein von Kamienski, Band offsets and electronic structure of SiC/SiO2 interfaces. J. Appl. Phys. 79, 3108–3114 (1996)Google Scholar
  67. 67.
    P. Tanner, S. Dimitrijev, H.B. Harrison, Current mechanisms in n-SiC/p-Si heterojunctions, in Conference on Optoelectronic and Microelectronic Materials and Devices, 2008. COMMAD 2008 (2008), pp. 41–43Google Scholar
  68. 68.
    A. Qamar, P. Tanner, D.V. Dao, H.-P. Phan, T. Dinh, Electrical properties of p-type 3C-SiC/Si heterojunction diode under mechanical stress. IEEE Electron Device Lett. 35, 1293–1295 (2014)CrossRefGoogle Scholar
  69. 69.
    S.Z. Karazhanov, I. Atabaev, T. Saliev, É. Kanaki, E. Dzhaksimov, Excess tunneling currents in p-Si-n-3C-SiC heterostructures. Semiconductors 35, 77–79 (2001)CrossRefGoogle Scholar
  70. 70.
    P. Yih, J. Li, A. Steckl, SiC/Si heterojunction diodes fabricated by self-selective and by blanket rapid thermal chemical vapor deposition. IEEE Trans. Electron Devices 41, 281–287 (1994)CrossRefGoogle Scholar
  71. 71.
    L. Marsal, J. Pallares, X. Correig, A. Orpella, D. Bardés, R. Alcubilla, Analysis of conduction mechanisms in annealed n-Si 1 − x C x: H/p-crystalline Si heterojunction diodes for different doping concentrations. J. Appl. Phys. 85, 1216–1221 (1999)CrossRefGoogle Scholar
  72. 72.
    S.B. Hou, P.E. Hellström, C.M. Zetterling, M. Östling, 4H-SiC PIN diode as high temperature multifunction sensor, in Materials Science Forum (2017, pp. 630–633)CrossRefGoogle Scholar
  73. 73.
    S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)CrossRefGoogle Scholar
  74. 74.
    G. Brezeanu, M. Badila, F. Draghici, R. Pascu, G. Pristavu, F. Craciunoiu, et al., High temperature sensors based on silicon carbide (SiC) devices, in 2015 International Semiconductor Conference (CAS) (2015), pp. 3–10.Google Scholar
  75. 75.
    S. Rao, G. Pangallo, F.G. Della Corte, Highly linear temperature sensor based on 4H-silicon carbide pin diodes. IEEE Electron Device Lett. 36, 1205–1208 (2015)CrossRefGoogle Scholar
  76. 76.
    V. Cimalla, J. Pezoldt, O. Ambacher, Group III nitride and SiC based MEMS and NEMS: materials properties, technology and applications. J. Phys. D Appl. Phys. 40, 6386 (2007)CrossRefGoogle Scholar
  77. 77.
    M. Mehregany, C.A. Zorman, SiC MEMS: opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518–524 (1999)CrossRefGoogle Scholar
  78. 78.
    N. Zhang, C.-M. Lin, D.G. Senesky, A.P. Pisano, Temperature sensor based on 4H-silicon carbide pn diode operational from 20 °C to 600 °C. Appl. Phys. Lett. 104, 073504 (2014)CrossRefGoogle Scholar
  79. 79.
    S. Rao, G. Pangallo, F. Pezzimenti, F.G. Della Corte, High-performance temperature sensor based on 4H-SiC Schottky diodes. IEEE Electron Device Lett. 36, 720–722 (2015)CrossRefGoogle Scholar
  80. 80.
    S. Zhao, G. Lioliou, A. Barnett, Temperature dependence of commercial 4H-SiC UV Schottky photodiodes for X-ray detection and spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 859, 76–82 (2017)CrossRefGoogle Scholar
  81. 81.
    M. Gülnahar, Temperature dependence of current-and capacitance–voltage characteristics of an Au/4H-SiC Schottky diode. Superlattices Microstruct. 76, 394–412 (2014)CrossRefGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Queensland Micro- and Nanotechnology Centre (QMNC)Griffth UniversityBrisbaneAustralia
  2. 2.Queensland Micro- and Nanotechnology Centre (QMNC)Griffith UniversityBrisbaneAustralia
  3. 3.School of Engineering and Built EnvironmentGriffith UniversitySouthportAustralia

Personalised recommendations