Advertisement

Introduction to SiC and Thermoelectrical Properties

  • Toan Dinh
  • Nam-Trung Nguyen
  • Dzung Viet Dao
Chapter
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)

Abstract

This chapter presents the general background on silicon carbide as a functional semiconductor for sensors operating in harsh environments. The fundamental stacking orders of different SiC polytypes with common growth methods and conditions are introduced, with a focus on cubic silicon carbide (3C-SiC) and hexagonal silicon carbide (e.g. 4H-SiC and 6H-SiC). This chapter also introduces the thermoelectrical effect in SiC with respect to sensing properties at high temperatures. The importance of SiC materials with a wide range of applications in harsh environments will be mentioned.

Keywords

Silicon carbide Thermoelectrical effect MEMS Harsh environments 

References

  1. 1.
    D.G. Senesky, B. Jamshidi, K.B. Cheng, A.P. Pisano, Harsh environment silicon carbide sensors for health and performance monitoring of aerospace systems: a review. IEEE Sens. J. 9, 1472–1478 (2009)CrossRefGoogle Scholar
  2. 2.
    J.A. Erkoyuncu, R. Roy, E. Shehab, P. Wardle, Uncertainty challenges in service cost estimation for product-service systems in the aerospace and defence industries, in Proceedings of the 19th CIRP Design Conference—Competitive Design (2009)Google Scholar
  3. 3.
    T.Q. Trung, N.E. Lee, Flexible and stretchable physical sensor integrated platforms for wearable human‐activity monitoring and personal healthcare. Advanced Materials (2016)Google Scholar
  4. 4.
    H. Sohn, C.R. Farrar, F.M. Hemez, D.D. Shunk, D.W. Stinemates, B.R. Nadler et al., A Review of Structural Health Monitoring Literature: 1996–2001 (Los Alamos National Laboratory, USA, 2003)Google Scholar
  5. 5.
    V. Balakrishnan, H.-P. Phan, T. Dinh, D.V. Dao, N.-T. Nguyen, Thermal flow sensors for harsh environments. Sensors 17, 2061 (2017)CrossRefGoogle Scholar
  6. 6.
    Y. Wang, Y. Jia, Q. Chen, Y. Wang, A passive wireless temperature sensor for harsh environment applications. Sensors 8, 7982–7995 (2008)CrossRefGoogle Scholar
  7. 7.
    H. Kairm, D. Delfin, M.A.I. Shuvo, L.A. Chavez, C.R. Garcia, J.H. Barton et al., Concept and model of a metamaterial-based passive wireless temperature sensor for harsh environment applications. IEEE Sens. J. 15, 1445–1452 (2015)CrossRefGoogle Scholar
  8. 8.
    L. Chen, M. Mehregany, A silicon carbide capacitive pressure sensor for high temperature and harsh environment applications, in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International (2007), pp. 2597–2600Google Scholar
  9. 9.
    K.S. Szajda, C.G. Sodini, H.F. Bowman, A low noise, high resolution silicon temperature sensor. IEEE J. Solid-State Circuits 31, 1308–1313 (1996)CrossRefGoogle Scholar
  10. 10.
    R.G. Azevedo, D.G. Jones, A.V. Jog, B. Jamshidi, D.R. Myers, L. Chen et al., A SiC MEMS resonant strain sensor for harsh environment applications. IEEE Sens. J. 7, 568–576 (2007)CrossRefGoogle Scholar
  11. 11.
    M.E. Levinshtein, S.L. Rumyantsev, M.S. Shur, Properties of Advanced Semiconductor Materials: GaN, AIN, InN, BN, SiC, SiGe (Wiley, London, 2001)Google Scholar
  12. 12.
    R.F. Davis, Thin films and devices of diamond, silicon carbide and gallium nitride. Phys. B 185, 1–15 (1993)CrossRefGoogle Scholar
  13. 13.
    J. Casady, R.W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: a review. Solid-State Electron 39, 1409–1422 (1996)CrossRefGoogle Scholar
  14. 14.
    M. Mehregany, C.A. Zorman, N. Rajan, C.H. Wu, Silicon carbide MEMS for harsh environments. Proc. IEEE 86, 1594–1609 (1998)CrossRefGoogle Scholar
  15. 15.
    X. She, A.Q. Huang, Ó. Lucía, B. Ozpineci, Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 64, 8193–8205 (2017)CrossRefGoogle Scholar
  16. 16.
    L. Wang, A. Iacopi, S. Dimitrijev, G. Walker, A. Fernandes, L. Hold et al., Misorientation dependent epilayer tilting and stress distribution in heteroepitaxially grown silicon carbide on silicon (111) substrate. Thin Solid Films 564, 39–44 (2014)CrossRefGoogle Scholar
  17. 17.
    G.L. Harris, Properties of silicon carbide (IET, 1995)Google Scholar
  18. 18.
    D. Feldman, J.H. Parker Jr., W. Choyke, L. Patrick, Phonon dispersion curves by raman scattering in SiC, Polytypes 3 C, 4 H, 6 H, 1 5 R, and 2 1 R. Phys. Rev. 173, 787 (1968)CrossRefGoogle Scholar
  19. 19.
    G.N. Morscher, A.L. Gyekenyesi, The velocity and attenuation of acoustic emission waves in SiC/SiC composites loaded in tension. Compos. Sci. Technol. 62, 1171–1180 (2002)CrossRefGoogle Scholar
  20. 20.
    K.N. Lee, R.A. Miller, Oxidation behavior of muilite-coated SiC and SiC/SiC composites under thermal cycling between room temperature and 1200°–1400 °C. J. Am. Ceram. Soc. 79, 620–626 (1996)CrossRefGoogle Scholar
  21. 21.
    L. Shi, C. Sun, P. Gao, F. Zhou, W. Liu, Mechanical properties and wear and corrosion resistance of electrodeposited Ni–Co/SiC nanocomposite coating. Appl. Surf. Sci. 252, 3591–3599 (2006)CrossRefGoogle Scholar
  22. 22.
    D. Barrett, R. Campbell, Electron mobility measurements in SiC polytypes. J. Appl. Phys. 38, 53–55 (1967)CrossRefGoogle Scholar
  23. 23.
    M. Mehregany, C.A. Zorman, SiC MEMS: opportunities and challenges for applications in harsh environments. Thin Solid Films 355, 518–524 (1999)CrossRefGoogle Scholar
  24. 24.
    H. Mukaida, H. Okumura, J. Lee, H. Daimon, E. Sakuma, S. Misawa et al., Raman scattering of SiC: estimation of the internal stress in 3C-SiC on Si. J. Appl. Phys. 62, 254–257 (1987)CrossRefGoogle Scholar
  25. 25.
    L. Wang, S. Dimitrijev, J. Han, A. Iacopi, L. Hold, P. Tanner et al., Growth of 3C–SiC on 150-mm Si (100) substrates by alternating supply epitaxy at 1000 C. Thin Solid Films 519, 6443–6446 (2011)CrossRefGoogle Scholar
  26. 26.
    L. Wang, S. Dimitrijev, J. Han, P. Tanner, A. Iacopi, L. Hold, Demonstration of p-type 3C–SiC grown on 150 mm Si (1 0 0) substrates by atomic-layer epitaxy at 1000 °C. J. Cryst. Growth 329, 67–70 (2011)CrossRefGoogle Scholar
  27. 27.
    F. Roccaforte, F. La Via, V. Raineri, Ohmic contacts to SiC. Int. J. High Speed Electron. Syst. 15, 781–820 (2005)CrossRefGoogle Scholar
  28. 28.
    Z. Wang, W. Liu, C. Wang, Recent progress in ohmic contacts to silicon carbide for high-temperature applications. J. Electron. Mater. 45, 267–284 (2016)CrossRefGoogle Scholar
  29. 29.
    K. Nishi, A. Ikeda, D. Marui, H. Ikenoue, T. Asano, n-and p-Type Doping of 4H-SiC by Wet-Chemical Laser Processing, in Materials Science Forum (2014), pp. 645–648CrossRefGoogle Scholar
  30. 30.
    K. Eto, H. Suo, T. Kato, H. Okumura, Growth of P-type 4H–SiC single crystals by physical vapor transport using aluminum and nitrogen co-doping. J. Cryst. Growth 470, 154–158 (2017)CrossRefGoogle Scholar
  31. 31.
    S.M. Sze, K.K. Ng, Physics of Semiconductor Devices (Wiley, 2006)Google Scholar
  32. 32.
    P. Wellmann, S. Bushevoy, R. Weingärtner, Evaluation of n-type doping of 4H-SiC and n-/p-type doping of 6H-SiC using absorption measurements. Mater. Sci. Eng., B 80, 352–356 (2001)CrossRefGoogle Scholar
  33. 33.
    A. Kovalevskii, A. Dolbik, S. Voitekh, Effect of doping on the temperature coefficient of resistance of polysilicon films. Russ. Microlectron. 36, 153–158 (2007)CrossRefGoogle Scholar
  34. 34.
    S. Rao, G. Pangallo, F.G. Della Corte, 4H-SiC pin diode as highly linear temperature sensor. IEEE Trans. Electron Devices 63, 414–418 (2016)CrossRefGoogle Scholar
  35. 35.
    S. Rao, G. Pangallo, F. Pezzimenti, F.G. Della Corte, High-performance temperature sensor based on 4H-SiC schottky diodes. IEEE Electron Device Lett. 36, 720–722 (2015)CrossRefGoogle Scholar
  36. 36.
    S.B. Hou, P.E. Hellström, C.M. Zetterling, M. Östling, 4H-SiC PIN diode as high temperature multifunction sensor, in Materials Science Forum (2017), pp. 630–633CrossRefGoogle Scholar
  37. 37.
    S. Zhao, G. Lioliou, A. Barnett, Temperature dependence of commercial 4H-SiC UV Schottky photodiodes for X-ray detection and spectroscopy. Nucl. Instrum. Methods Phys. Res., Sect. A 859, 76–82 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Fukuda, T. Kato, Y. Okamoto, H. Nakatsugawa, H. Kitagawa, S. Yamaguchi, Thermoelectric properties of single-crystalline SiC and dense sintered SiC for self-cooling devices. Jpn. J. Appl. Phys. 50, 031301 (2011)CrossRefGoogle Scholar
  39. 39.
    T. Dinh, H.-P. Phan, A. Qamar, P. Woodfield, N.-T. Nguyen, D.V. Dao, Thermoresistive effect for advanced thermal sensors: fundamentals, design considerations, and applications. J. Microelectromech. Syst. (2017)Google Scholar
  40. 40.
    J.W. Gardner, V.K. Varadan, O.O. Awadelkarim, Microsensors, MEMS, and Smart Devices, vol. 1 (Wiley Online Library, 2001)Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Queensland Micro- and Nanotechnology Centre (QMNC)Griffth UniversityBrisbaneAustralia
  2. 2.Queensland Micro- and Nanotechnology Centre (QMNC)Griffith UniversityBrisbaneAustralia
  3. 3.School of Engineering and Built EnvironmentGriffith UniversitySouthportAustralia

Personalised recommendations