Advertisement

Results and Discussion

  • Tae-Ho Lee
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Figure 4.1a shows the XRD patterns of the KN thin films grown on the Pt–Si substrate at various temperatures. An amorphous phase was formed in the films grown below 700 °C. The KNb3O8 and KNb5O13 phases, indicated by open circles and open triangles, respectively, were developed in the film grown at 700 °C without formation of the KN phase. Therefore, it was not possible to grow the homogeneous KN film by the sputtering method using the stoichiometric KN target owing to the evaporation of K2O. A similar result was obtained for the NKN film; the amorphous phase was formed for the films grown at temperatures ≤500 °C, and the Na-deficient secondary phase, with a small amount of the NKN phase, was formed in the film deposited at 600 °C, due to the evaporation of K2O and Na2O [1, 2, 3].

References

  1. 1.
    Kang L-S, Kim B-Y, Seo I-T, Seong T-G, Kim J-S, Sun J-W, Paik D-S, Hwang I, Park BH, Nahm S (2011) J Am Ceram Soc 94:1970–1973CrossRefGoogle Scholar
  2. 2.
    Kim B-Y, Seong T-G, Seo I-T, Jang M-S, Nahm S, Kang J-Y, Yoon S-J (2012) Acta Mater 60:3107–3112CrossRefGoogle Scholar
  3. 3.
    Kim B-Y, Seong T-G, Seo I-T, Kim J-S, Kang C-Y, Yoon S-J, Nahm S (2012) Acta Mater 60:7034–7040CrossRefGoogle Scholar
  4. 4.
    Lee Y-H, Wu J-M, Chueh Y-L, Chou L-J (2005) Appl Phys Lett 87:172901CrossRefGoogle Scholar
  5. 5.
    Pintilie L, Pasuk I, Negrea R, Filip LD, Pintilie I (2012) J Appl Phys 112:064116CrossRefGoogle Scholar
  6. 6.
    Duan C-G, Sabirianov RF, Mei W-N, Jaswal SS, Tsymbal EY (2006) Nano Lett 6:483–487CrossRefGoogle Scholar
  7. 7.
    Lee Y-S, Seo I-T, Kim B-Y, Nahm S, Kang C-Y, Jeong Y-H, Paik J-H, Trolier-McKinstry S (2014) J Am Ceram Soc 97:2892–2896CrossRefGoogle Scholar
  8. 8.
    Lee G, Shin Y-H, Son JY, Brennecka GL (2012) J Am Ceram Soc 95:2773CrossRefGoogle Scholar
  9. 9.
    Lee SY, Ahn CW, Kim JS, Ullah A, Lee HJ, Hwang H-I, Choi JS, Park BH, Kim IW (2011) J Alloy Compd 509:L194–L198CrossRefGoogle Scholar
  10. 10.
    Fu C, Pan F, Cai WEI (2007) Integr Ferroelectr 91:112–118CrossRefGoogle Scholar
  11. 11.
    Dietz GW, Antpöhler W, Klee M, Waser R (1995) J Appl Phys 78:6113–6121CrossRefGoogle Scholar
  12. 12.
    Dietz G, Schumacher M, Waser R, Streiffer S, Basceri C, Kingon A (1997) J Appl Phys 82:2359–2364CrossRefGoogle Scholar
  13. 13.
    Kim D-H, Joung M-R, Seo I-T, Hur J, Kim J-H, Kim B-Y, Lee H-J, Nahm S (2014) J Eur Ceram Soc 34:4193–4200CrossRefGoogle Scholar
  14. 14.
    Lee T-H, Kim D-H, Kim B-Y, Choi H-Y, Oh J-H, Kang C-Y, Nahm S (2016) Acta Mater 112:53–58CrossRefGoogle Scholar
  15. 15.
    Li Y, Hu S, Liu Z, Chen L (2002) Acta Mater 50:395–411CrossRefGoogle Scholar
  16. 16.
    Chang W-Y, Liao J-H, Lo Y-S, Wu T-B (2009) Appl Phys Lett 94:172107CrossRefGoogle Scholar
  17. 17.
    Lee B-S, Kim B-Y, Lee J-H, Yoo JH, Hong K, Nahm S (2014) Curr Appl Phys 14:1825–1830CrossRefGoogle Scholar
  18. 18.
    Liu Y, Li L, Wang S, Gao P, Zhou P, Li J, Weng Z, Pan L, Zhang J (2015) Appl Phys Lett 106:063506CrossRefGoogle Scholar
  19. 19.
    Nakayama Y, Pauzauskie PJ, Radenovic A, Onorato RM, Saykally RJ, Liphardt J, Yang P (2007) Nature 447:1098CrossRefGoogle Scholar
  20. 20.
    Ge H, Hou Y, Rao X, Zhu M, Wang H, Yan H (2011) Appl Phys Lett 99:032905CrossRefGoogle Scholar
  21. 21.
    Birol H, Damjanovic D, Setter N (2005) J Am Ceram Soc 88:1754–1759CrossRefGoogle Scholar
  22. 22.
    Jung JH, Lee M, Hong J-I, Ding Y, Chen C-Y, Chou L-J, Wang ZL (2011) ACS Nano 5:10041CrossRefGoogle Scholar
  23. 23.
    Joung M-R, Xu H, Seo I-T, Kim D-H, Hur J, Nahm S, Kang C-Y, Yoon S-J, Park H-MJ (2014) Mater Chem A 2:18547–18553CrossRefGoogle Scholar
  24. 24.
    Kim BY, Lee WH, Hwang HG, Kim DH, Kim JH, Lee SH, Nahm S (2016) Adv Funct Mater 26:5211–5221CrossRefGoogle Scholar
  25. 25.
    Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nano Lett 10:1297CrossRefGoogle Scholar
  26. 26.
    Qian K, Cai G, Nguyen VC, Chen T, Lee PS, Appl ACS (2016) Mater Interfaces 8:27885CrossRefGoogle Scholar
  27. 27.
    Liu Q, Long S, Lv H, Wang W, Niu J, Huo Z, Chen J, Liu M (2010) ACS Nano 4:6162CrossRefGoogle Scholar
  28. 28.
    Antula J (1967) Phys Stat Sol 24:89CrossRefGoogle Scholar
  29. 29.
    Vollmann W (1974) Phys Stat Sol (a) 22:195CrossRefGoogle Scholar
  30. 30.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) Nature 453:80CrossRefGoogle Scholar
  31. 31.
    Sawa A (2008) Mater Today 11:28CrossRefGoogle Scholar
  32. 32.
    Bliss TVP, Collingridge GL (1993) Nature 361:31CrossRefGoogle Scholar
  33. 33.
    Stevens CF, Wesseling JF (1999) Neuron 22:139CrossRefGoogle Scholar
  34. 34.
    Abbott LF, Nelson SB (2000) Nat Neurosci 3:1178CrossRefGoogle Scholar
  35. 35.
    Wang ZQ, Xu HY, Li XH, Yu H, Liu YC, Zhu XJ (2012) Adv Funct Mater 22:2759CrossRefGoogle Scholar
  36. 36.
    Wang Z, Joshi S, Savel’ev SE, Jiang H, Midya R, Lin P, Hu M, Ge N, Strachan JP, Li Z, Wu Q, Barnell M, Li G-L, Xin HL, Williams RS, Xia Q, Yang JJ (2017) Nat Mater.  https://doi.org/10.1038/nmat4756CrossRefGoogle Scholar
  37. 37.
    Chang T, Jo S, Lu W (2011) ACS Nano 5:7669CrossRefGoogle Scholar
  38. 38.
    Bi G, Poo M (1998) J Neurosci 18:10464CrossRefGoogle Scholar
  39. 39.
    Abraham WC (2008) Nat Rev Neurosci 9:387CrossRefGoogle Scholar
  40. 40.
    Abraham WC, Bear MF (1996) Trends Neurosci 19:126CrossRefGoogle Scholar
  41. 41.
    Abraham WC, Tate WP (1997) Prog Neurobiol 52:303CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Korea Electronics Technology InstituteSeongnamKorea (Republic of)

Personalised recommendations