Advertisement

Introduction

  • Tae-Ho Lee
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

Wireless nanodevices have been extensively studied in a wide range of biological application fields such as artificial electronic skin, implantable devices and body attached electronic systems [1, 2, 3, 4, 5, 6, 7]. Recently self-powered biomedical devices are advantageous for biological devices driven by piezo-electric nano generators (PNGs), which can transform wasted mechanical energy of the human body into electrical energy [8, 9, 10]. In order to improve the performance of power-supply medical devices, these people need a high-efficiency computing system, but they use a traditional digital computing system based on the Phon Neumann architecture.

References

  1. 1.
    Wang XW, Gu Y, Xiong ZP, Cui Z, Zhang T (2014) Adv Mater 26:1336CrossRefGoogle Scholar
  2. 2.
    Tee BC-K, Wang C, Allen R, Bao Z (2012) Nat Nanotech 7:825CrossRefGoogle Scholar
  3. 3.
    Takei K, Takahashi T, Ho JC, Ko H, Gillies AG, Leu PW, Fearing RS, Javey A (2010) Nat Mater 9:821CrossRefGoogle Scholar
  4. 4.
    Zheng Q, Shi B, Fan F, Wang X, Yan L, Yuan W, Wang S, Liu H, Li Z, Wang ZL (2014) Adv Mater 26:5851CrossRefGoogle Scholar
  5. 5.
    Groisman A, Enzelberger M, Quake SR (2003) Science 300:955CrossRefGoogle Scholar
  6. 6.
    Son D, Lee J, Qiao S, Ghaffari R, Kim J, Lee JE, Song C, Kim SJ, Lee DJ, Jun SW, Yang S, Park M, Shin J, Do K, Lee M, Kang K, Hwang CS, Lu N, Hyeon T, Kim D-H (2014) Nat Nanotechnol 9:397CrossRefGoogle Scholar
  7. 7.
    Hinchet R, Kim S-W (2015) ACS Nano 9:7742CrossRefGoogle Scholar
  8. 8.
    Hwang GT, Park H, Lee JH, Oh S, Park KI, Byun M, Park H, Ahn G, Jeong CK, No K, Kwon H, Lee SG, Joung B, Lee KJ (2014) Adv Mater 26:4880CrossRefGoogle Scholar
  9. 9.
    Wang ZL (2008) Adv Funct Mater 18:3553CrossRefGoogle Scholar
  10. 10.
    Yang R, Qin Y, Li C, Zhu G, Wang ZL (2009) Nano Lett 9:1201CrossRefGoogle Scholar
  11. 11.
    Legenstein R (2015) Nature 521:37CrossRefGoogle Scholar
  12. 12.
    Backus J (1978) Commun ACM 21:613CrossRefGoogle Scholar
  13. 13.
    Hasegawa T, Terabe K, Tsuruoka T, Aono M (2012) Adv Mater 24:252CrossRefGoogle Scholar
  14. 14.
    Mead C (1990) Proc IEEE 78:1629CrossRefGoogle Scholar
  15. 15.
    Prezioso M, Merrikh-Bayat F, Hoskins BD, Adam GC, Likharev KK, Strukov DB (2015) Nature 521:61CrossRefGoogle Scholar
  16. 16.
    Drachman D (2004) Neurology 2005:64Google Scholar
  17. 17.
    Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nano Lett 10:1297CrossRefGoogle Scholar
  18. 18.
    Yu SM, Gao B, Fang Z, Yu HY, Kang JF, Wong HSP (2013) Adv Mater 25:1774CrossRefGoogle Scholar
  19. 19.
    Wang ZQ, Xu HY, Li XH, Yu H, Liu YC, Zhu XJ (2012) Adv Funct Mater 22:2759CrossRefGoogle Scholar
  20. 20.
    Hasegawa T, Ohno T, Terabe K, Tsuruoka T, Nakayama T, Gimzewski JK, Aono M (2010) Adv Mater 22:1831CrossRefGoogle Scholar
  21. 21.
    Josberger EE, Deng Y, Sun W, Kautz R, Rolandi M (2014) Adv Mater 26:4986CrossRefGoogle Scholar
  22. 22.
    Bi G, Poo M (1998) J Neurosci 18:10464CrossRefGoogle Scholar
  23. 23.
    Abbott LF, Nelson SB (2000) Nat Neurosci 3:1178CrossRefGoogle Scholar
  24. 24.
    Watt AJ, Desai NS (2010) Front Synaptic Neurosci 2:240CrossRefGoogle Scholar
  25. 25.
    Abraham WC (2008) Nat Rev Neurosci 9:387CrossRefGoogle Scholar
  26. 26.
    Abraham WC, Bear MF (1996) Trends Neurosci 19:126CrossRefGoogle Scholar
  27. 27.
    Abraham WC, Tate WP (1997) Prog Neurobiol 52:303CrossRefGoogle Scholar
  28. 28.
    Strukov DB, Snider GS, Stewart DR, Williams RS (2008) Nature 453:80CrossRefGoogle Scholar
  29. 29.
    Ohno T, Hasegawa T, Tsuruoka T, Terabe K, Gimzewski JK, Aono M (2011) Nat Mater 10:591CrossRefGoogle Scholar
  30. 30.
    Kim DJ, Lu H, Ryu S, Bark C-W, Eom C-B, Tsymbal EY, Gruverman A (2012) Nano Lett 12:5697CrossRefGoogle Scholar
  31. 31.
    Chanthbouala A, Garcia V, Cherifi RO, Bouzehouane K, Fusil S, Moya X, Xavier S, Yamada H, Deranlot C, Mathur ND, Bibes M, Barthélémy A, Grollier J (2012) Nat Mater 11:860CrossRefGoogle Scholar
  32. 32.
    Jeong HY, Lee JY, Choi S-Y (2010) Adv Funct Mater 20:3912CrossRefGoogle Scholar
  33. 33.
    Miao F, Strachan JP, Yang JJ, Zhang M, Goldfarb I, Torrezan AC, Eschbach P, Kelley RD, Medeiros-Ribeiro G, Williams RS (2011) Adv Mater 23:5633–5640CrossRefGoogle Scholar
  34. 34.
    Wright CD, Liu Y, Kohary KI, Aziz MM, Hicken RJ (2011) Adv Mater 23:3408CrossRefGoogle Scholar
  35. 35.
    Indiveri G, Chicca E, Douglas R (2006) IEEE Trans Neural Netw 17:211CrossRefGoogle Scholar
  36. 36.
    Tan Z-H, Yang R, Terabe K, Yin X-B, Zhang X-D, Guo X (2016) Adv Mater 28:377CrossRefGoogle Scholar
  37. 37.
    Magrez A, Vasco E, Seo JW, Dieker C, Setter N, Forro L (2006) J Phys Chem B 110:58–61CrossRefGoogle Scholar
  38. 38.
    Vasco E, Magrez A, Forro L (2005) J Phys Chem B 109:14331–14334CrossRefGoogle Scholar
  39. 39.
    Wang G, Selbach SM, Yu Y, Zhang X, Grande T, Einarsrud M-A (2009) CrystEngComm 1958:11Google Scholar
  40. 40.
    Nakayama Y, Pauzauskie PJ, Radenovic A, Onorato RM, Saykally RJ, Liphardt J, Yang P (2007) Nature 1098:447Google Scholar
  41. 41.
    Ge H, Hou Y, Rao X, Zhu M, Wang H, Yan H (2011) Appl Phys Lett 99:032905CrossRefGoogle Scholar
  42. 42.
    Birol H, Damjanovic D, Setter N (2005) J Am Ceram Soc 88:1754–1759CrossRefGoogle Scholar
  43. 43.
    Kakimoto K-I, Masuda I, Ohsato H (2005) J Eur Ceram Soc 25:2719–2722CrossRefGoogle Scholar
  44. 44.
    Nagata H, Matsumoto K, Hirosue T, Hiruma Y, Takenaka T (2007) Jpn J Appl Phys 46:7084CrossRefGoogle Scholar
  45. 45.
    Kim JH, Kim DH, Lee TH, Lee TG, Lee JH, Kim BY, Nahm S, Kang CY, Ryu J (2016) J Am Ceram Soc 99:4031–4038CrossRefGoogle Scholar
  46. 46.
    Nakamura K, Tokiwa T, Kawamura Y (2002) J Appl Phys 91:9272–9276CrossRefGoogle Scholar
  47. 47.
    Wada S, Seike A, Tsurumi T (2001) Jpn J Appl Phys 40:5690CrossRefGoogle Scholar
  48. 48.
    Chani V, Shimamura K, Fukuda T (1999) Cryst Res Technol 34:519–525CrossRefGoogle Scholar
  49. 49.
    Kimura H, Miyazaki A, Maiwa K, Cheng Z, Kannan C (2007) Opt Mater 30:198–200CrossRefGoogle Scholar
  50. 50.
    Mann M, Jackson S, Kolis J (2010) J Solid State Chem 183:2675–2680CrossRefGoogle Scholar
  51. 51.
    Li B, Hakuta Y, Hayashi H (2005) Hydrothermal synthesis of KNbO3 powders in supercritical water and its nonlinear optical properties. J Supercrit Fluids 35:254–259CrossRefGoogle Scholar
  52. 52.
    Wang Y, Kong X, Tian W, Lei D, Lei X (2016) RSC Adv 6:58401–58408CrossRefGoogle Scholar
  53. 53.
    Shi G, Wang J, Wang H, Wu Z, Wu H (2017) Ceram Int 43:7222–7230CrossRefGoogle Scholar
  54. 54.
    Chakraborty S, Kumar Ghosh S, Chandra Das G, Mukherjee S (2016) Int J Appl Ceram Technol 13:743–752CrossRefGoogle Scholar
  55. 55.
    SchwynThöny S, Lehmann H, Günter P (1992) Appl Phys Lett 61:373–375CrossRefGoogle Scholar
  56. 56.
    Joung M-R, Seo I-T, Kim J-S, Xu H, Han G, Kang M-G, Kang C-Y, Yoon S-J, Nahm S (2013) Acta Mater 61:3703–3708CrossRefGoogle Scholar
  57. 57.
    Derderian GJ, Barrie JD, Aitchison KA, Adams PM, Mecartney ML (1994) J Am Ceram Soc 77:820–828CrossRefGoogle Scholar
  58. 58.
    Arai T, Ito S, Ishikawa K, Nakamura K (2003) Jpn J Appl Phys 42:6019CrossRefGoogle Scholar
  59. 59.
    Onoe A, Yoshida A, Chikuma K (1996) Appl Phys Lett 69:167–169CrossRefGoogle Scholar
  60. 60.
    Nystrom M, Wessels B, Studebaker D, Marks T, Lin W, Wong G (1995) Appl Phys Lett 67:365CrossRefGoogle Scholar
  61. 61.
    Lee T-H, Kim D-H, Kim B-Y, Choi H-Y, Oh J-H, Kang C-Y, Nahm S (2016) Acta Mater 112:53–58CrossRefGoogle Scholar
  62. 62.
    Kakio S, Kurosawa H, Suzuki T, Nakagawa Y (2008) Jpn J Appl Phys 47:3802CrossRefGoogle Scholar
  63. 63.
    Jeong CK, Han JH, Palneedi H, Park H, Hwang G-T, Joung B, Kim S-G, Shin HJ, Kang I-S, Ryu J (2017) APL Mater 5:074102CrossRefGoogle Scholar
  64. 64.
    Zheng Q, Zhang H, Shi B, Xue X, Liu Z, Jin Y, Ma Y, Zou Y, Wang X, An Z (2016) ACS Nano 10:6510–6518CrossRefGoogle Scholar
  65. 65.
    Priya S (2010) IEEE Trans Ultrason Ferroelect Freq Control 57:2610–2612CrossRefGoogle Scholar
  66. 66.
    Xu S, Yeh Y-W, Poirier G, McAlpine MC, Register RA, Yao N (2013) Nano Lett 13:2393–2398CrossRefGoogle Scholar
  67. 67.
    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M (2004) Nature 432:84–87CrossRefGoogle Scholar
  68. 68.
    Zhang B, Wu J, Cheng X, Wang X, Xiao D, Zhu J, Wang X, Lou X (2013) ACS Appl Mater Interfaces 5:7718–7725CrossRefGoogle Scholar
  69. 69.
    Kim BY, Seo IT, Lee YS, Kim JS, Nahm S, Kang CY, Yoon SJ, Paik JH, Jeong YH (2015) J Am Ceram Soc 98:119–124CrossRefGoogle Scholar
  70. 70.
    Sawa A (2008) Mater Today 11:28–36CrossRefGoogle Scholar
  71. 71.
    Waser R, Aono M (2007) Nat Mater 6:833–840CrossRefGoogle Scholar
  72. 72.
    Yang JJ, Strukov DB, Stewart DR (2013) Nat Nanotechnol 8:13–24CrossRefGoogle Scholar
  73. 73.
    Hwang CS (2015) Adv Electron Mater 1:1400056–1400085CrossRefGoogle Scholar
  74. 74.
    Yoon JH, Kim KM, Song SJ, Seok JY, Yoon KJ, Kwon DE, Park TH, Kwon YJ, Shao X, Hwang CS (2015) Adv Mater 27:3811–3816CrossRefGoogle Scholar
  75. 75.
    Hu W, Zou L, Chen X, Qin N, Li S, Bao D (2014) ACS Appl Mater Interfaces 6:5012–5017CrossRefGoogle Scholar
  76. 76.
    Sharma Y, Misra P, Pavunny SP, Katiyar RS (2014) Appl Phys Lett 104:073501CrossRefGoogle Scholar
  77. 77.
    You BK, Kim JM, Joe DJ, Yang K, Shin Y, Jung YS, Lee KJ (2016) ACS Nano 10:9478CrossRefGoogle Scholar
  78. 78.
    You BK, Park WI, Kim JM, Park K-I, Seo HK, Lee JY, Jung YS, Lee KJ (2014) ACS Nano 8(9):9492–9502CrossRefGoogle Scholar
  79. 79.
    Kim BY, Lee WH, Hwang HG, Kim DH, Kim JH, Lee SH, Nahm S (2016) Adv Funct Mater 26:5211–5221CrossRefGoogle Scholar
  80. 80.
    Kim B-Y, Hwang H-G, Woo J-U, Lee W-H, Lee T-H, Kang C-Y, Nahm S (2017) NPG Asia Mater 9:e381CrossRefGoogle Scholar
  81. 81.
    Jo SH, Chang T, Ebong I, Bhadviya BB, Mazumder P, Lu W (2010) Nano Lett 10(4):1297CrossRefGoogle Scholar
  82. 82.
    Park S-H, Kang Y-J, Majd S (2015) Adv Mater 27:7583CrossRefGoogle Scholar
  83. 83.
    Steinberg T, Schulz S, Spatz JP, Grabe N, Mussig E, Kohl A, Komposch G, Tomakidi P (2007) Nano Lett 7:287CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Korea Electronics Technology InstituteSeongnamKorea (Republic of)

Personalised recommendations