Quorum Sensing and Biofilm Formation in Pathogenic and Mutualistic Plant-Bacterial Interactions

  • Rajinikanth MohanEmail author
  • Marie Benton
  • Emily Dangelmaier
  • Zhengqing Fu
  • Akila Chandra Sekhar


Bacterial quorum sensing plays a cardinal role in determining the outcomes of plant interactions with pathogenic and mutualistic bacteria. This review dwells on the current understanding of how bacterial quorum sensing molecules, their cognate receptors and signaling pathways enable bacteria to interact with a plant host as a community. Suitable habitat niches on the plant, nutritional abundance as well as stress situations can all contribute to the formation of bacterial biofilms on plants and the abundance of nutrients such as host sugar molecules can not only serve as signals, but also as energy substrates and building blocks for biofilm formation. While biofilm formation is increasingly shown to be key to pathogenesis of bacterial plant pathogens, the modulation of plant immunity through QS signals is critical to the tolerance and establishment of mutualistic plant-microbe relationships. A new role for the versatile stress hormone salicylic acid as a possible quorum quenching molecule in plant-pathogen interactions is emerging and will be discussed. Furthermore, genetic studies coupled with -omics scale analysis of gene expression, advances in microscopy and the recent use of interdisciplinary approaches including molecular modeling and docking simulations and in silico and in vitro screening of small molecule compound libraries have provided novel insights into plant biofilm processes. The potential in targeting quorum interactions to control bacterial diseases of plants is discussed.


Quorum sensing Plant interactions Virulence factors Bacterial diseases 


  1. 1.
    Antony, A. R., Janani, R., & Kannan, V. R. (2017). Biofilm instigation of plant pathogenic bacteria and its control measures. Biofilms in Plant and Soil Health, 409.Google Scholar
  2. 2.
    Achouak, W., Heulin, T., Villemin, G., & Balandreau, J. (1994). Root colonization by symplasmata-forming Enterobacter agglomerans. FEMS Microbiology Ecology, 13, 287–294.CrossRefGoogle Scholar
  3. 3.
    Alagarasan, G., & Aswathy, K. S. (2017). Shoot the message, not the messenger-combating pathogenic virulence in plants by inhibiting quorum sensing mediated signaling molecules. Frontiers in Plant Science, 8, 556.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Alavi, P., Muller, H., Cardinale, M., Zachow, C., Sanchez, M. B., Martinez, J. L., & Berg, G. (2013). The DSF quorum sensing system controls the positive influence of Stenotrophomonas maltophilia on plants. PLoS One, 8, e67103.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Alavi, P., Starcher, M. R., Thallinger, G. G., Zachow, C., Muller, H., & Berg, G. (2014). Stenotrophomonas comparative genomics reveals genes and functions that differentiate beneficial and pathogenic bacteria. BMC Genomics, 15, 482.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Amano, A. (2010). Bacterial adhesins to host components in periodontitis. Periodontology 2000, 52, 12–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Amaya-Gomez, C. V., Hirsch, A. M., & Soto, M. J. (2015). Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility. BMC Microbiology, 15, 58.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    An, S. Q., Chin, K. H., Febrer, M., McCarthy, Y., Yang, J. G., Liu, C. L., Swarbreck, D., Rogers, J., Maxwell Dow, J., Chou, S. H., & Ryan, R. P. (2013). A cyclic GMP-dependent signalling pathway regulates bacterial phytopathogenesis. The EMBO Journal, 32, 2430–2438.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Ausmees, N., Jacobsson, K., & Lindberg, M. (2001). A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology, 147, 549–559.PubMedCrossRefGoogle Scholar
  10. 10.
    Bahar, O., De La Fuente, L., & Burdman, S. (2010). Assessing adhesion, biofilm formation and motility of Acidovorax citrulli using microfluidic flow chambers. FEMS Microbiology Letters, 312, 33–39.PubMedCrossRefGoogle Scholar
  11. 11.
    Bandara, M. B., Zhu, H., Sankaridurg, P. R., & Willcox, M. D. (2006). Salicylic acid reduces the production of several potential virulence factors of Pseudomonas aeruginosa associated with microbial keratitis. Investigative Ophthalmology & Visual Science, 47, 4453–4460.CrossRefGoogle Scholar
  12. 12.
    Barber, C. E., Tang, J. L., Feng, J. X., Pan, M. Q., Wilson, T. J., Slater, H., Dow, J. M., Williams, P., & Daniels, M. J. (1997). A novel regulatory system required for pathogenicity of Xanthomonas campestris is mediated by a small diffusible signal molecule. Molecular Microbiology, 24, 555–566.PubMedCrossRefGoogle Scholar
  13. 13.
    Bassler, B. L., & Losick, R. (2006). Bacterially speaking. Cell, 125, 237–246.PubMedCrossRefGoogle Scholar
  14. 14.
    Bauer, W. D., & Mathesius, U. (2004). Plant responses to bacterial quorum sensing signals. Current Opinion in Plant Biology, 7, 429–433.PubMedCrossRefGoogle Scholar
  15. 15.
    Beauregard, P. B., Chai, Y., Vlamakis, H., Losick, R., & Kolter, R. (2013). Bacillus subtilis biofilm induction by plant polysaccharides. Proceedings of the National Academy of Sciences of the United States of America, 110, E1621–E1630.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Beck von Bodman, S., & Farrand, S. K. (1995). Capsular polysaccharide biosynthesis and pathogenicity in Erwinia stewartii require induction by an N-acylhomoserine lactone autoinducer. Journal of Bacteriology, 177, 5000–5008.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Bogino, P. C., Oliva Mde, L., Sorroche, F. G., & Giordano, W. (2013). The role of bacterial biofilms and surface components in plant-bacterial associations. International Journal of Molecular Sciences, 14, 15838–15859.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Boureau, T., Routtu, J., Roine, E., Taira, S., & Romantschuk, M. (2002). Localization of hrpA-induced Pseudomonas syringae pv. tomato DC3000 in infected tomato leaves. Molecular Plant Pathology, 3, 451–460.PubMedCrossRefGoogle Scholar
  19. 19.
    Braeken, K., Daniels, R., Ndayizeye, M., Vanderleyden, J., & Michiels, J. (2008). Quorum sensing in bacteria-plant interactions. In C. S. Nautiyal & P. Dion (Eds.), Molecular mechanisms of plant and microbe coexistence (pp. 265–289). Berlin: Springer.CrossRefGoogle Scholar
  20. 20.
    Branda, S. S., Vik, S., Friedman, L., & Kolter, R. (2005). Biofilms: The matrix revisited. Trends in Microbiology, 13, 20–26.PubMedCrossRefGoogle Scholar
  21. 21.
    Bruce, L. (1997). The ecology of bacteria in the alfresco atmosphere. FEMS Microbiology Ecology, 23, 263–274.CrossRefGoogle Scholar
  22. 22.
    Burbank, L., Mohammadi, M., & Roper, M. C. (2015). Siderophore-mediated iron acquisition influences motility and is required for full virulence of the xylem-dwelling bacterial phytopathogen Pantoea stewartii subsp. stewartii. Applied and Environmental Microbiology, 81, 139–148.PubMedCrossRefGoogle Scholar
  23. 23.
    Cai, Z., Yuan, Z. H., Zhang, H., Pan, Y., Wu, Y., Tian, X. Q., Wang, F. F., Wang, L., & Qian, W. (2017). Fatty acid DSF binds and allosterically activates histidine kinase RpfC of phytopathogenic bacterium Xanthomonas campestris pv. campestris to regulate quorum-sensing and. Virulence, 13, e1006304.Google Scholar
  24. 24.
    Campbell, G. R., Reuhs, B. L., & Walker, G. C. (2002). Chronic intracellular infection of alfalfa nodules by Sinorhizobium meliloti requires correct lipopolysaccharide core. Proceedings of the National Academy of Sciences of the United States of America, 99, 3938–3943.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Carcamo-Oyarce, G., Lumjiaktase, P., Kummerli, R., & Eberl, L. (2015). Quorum sensing triggers the stochastic escape of individual cells from Pseudomonas putida biofilms. Nature Communications, 6, 5945.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Castiblanco, L. F., & Sundin, G. W. (2016). New insights on molecular regulation of biofilm formation in plant-associated bacteria. Journal of Integrative Plant Biology, 58, 362–372.PubMedCrossRefGoogle Scholar
  27. 27.
    Catto, C., Grazioso, G., Dell’Orto, S., Gelain, A., Villa, S., Marzano, V., Vitali, A., Villa, F., Cappitelli, F., & Forlani, F. (2017). The response of Escherichia coli biofilm to salicylic acid. Biofouling, 33, 235–251.PubMedCrossRefGoogle Scholar
  28. 28.
    Cha, C., Gao, P., Chen, Y. C., Shaw, P. D., & Farrand, S. K. (1998). Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. Molecular Plant-Microbe Interactions, 11, 1119–1129.PubMedCrossRefGoogle Scholar
  29. 29.
    Chang, C. Y., Krishnan, T., Wang, H., Chen, Y., Yin, W. F., Chong, Y. M., Tan, L. Y., Chong, T. M., & Chan, K. G. (2014). Non-antibiotic quorum sensing inhibitors acting against N-acyl homoserine lactone synthase as druggable target. Scientific Reports, 4, 7245.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Chatterjee, S., Killiny, N., Almeida, R. P., & Lindow, S. E. (2010). Role of cyclic di-GMP in Xylella fastidiosa biofilm formation, plant virulence, and insect transmission. Molecular Plant-Microbe Interactions, 23, 1356–1363.PubMedCrossRefGoogle Scholar
  31. 31.
    Cho, H. S., Park, S. Y., Ryu, C. M., Kim, J. F., Kim, J. G., & Park, S. H. (2007). Interference of quorum sensing and virulence of the rice pathogen Burkholderia glumae by an engineered endophytic bacterium. FEMS Microbiology Ecology, 60, 14–23.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Corral-Lugo, A., Daddaoua, A., Ortega, A., Espinosa-Urgel, M., & Krell, T. (2016a). Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Science Signaling, 9, ra1.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Corral-Lugo, A., Daddaoua, A., Ortega, A., Espinosa-Urgel, M., & Krell, T. (2016b). So different and still so similar: The plant compound rosmarinic acid mimics bacterial homoserine lactone quorum sensing signals. Communicative & Integrative Biology, 9, e1156832.CrossRefGoogle Scholar
  34. 34.
    Cruz, L. F., Cobine, P. A., & De La Fuente, L. (2012). Calcium increases Xylella fastidiosa surface attachment, biofilm formation, and twitching motility. Applied and Environmental Microbiology, 78, 1321–1331.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Danhorn, T., & Fuqua, C. (2007). Biofilm formation by plant-associated bacteria. Annual Review of Microbiology, 61, 401–422.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Daniels, R., Reynaert, S., Hoekstra, H., Verreth, C., Janssens, J., Braeken, K., Fauvart, M., Beullens, S., Heusdens, C., Lambrichts, I., De Vos, D. E., Vanderleyden, J., Vermant, J., & Michiels, J. (2006). Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proceedings of the National Academy of Sciences of the United States of America, 103, 14965–14970.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Darsonval, A., Darrasse, A., Durand, K., Bureau, C., Cesbron, S., & Jacques, M. A. (2009). Adhesion and fitness in the bean phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. Molecular Plant Microbe Interactions, 22, 747–757.PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Davies, D. G., Parsek, M. R., Pearson, J. P., Iglewski, B. H., Costerton, J. W., & Greenberg, E. P. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298.PubMedGoogle Scholar
  39. 39.
    De La Fuente, L., Montanes, E., Meng, Y., Li, Y., Burr, T. J., Hoch, H. C., & Wu, M. (2007). Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Applied and Environmental Microbiology, 73, 2690–2696.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    de Souza, A. A., Ionescu, M., Baccari, C., da Silva, A. M., & Lindow, S. E. (2013). Phenotype overlap in Xylella fastidiosa is controlled by the cyclic di-GMP phosphodiesterase Eal in response to antibiotic exposure and diffusible signal factor-mediated cell-cell signaling. Applied and Environmental Microbiology, 79, 3444–3454.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    de Weert, S., Vermeiren, H., Mulders, I. H., Kuiper, I., Hendrickx, N., Bloemberg, G. V., Vanderleyden, J., De Mot, R., & Lugtenberg, B. J. (2002). Flagella-driven chemotaxis towards exudate components is an important trait for tomato root colonization by Pseudomonas fluorescens. Molecular Plant-Microbe Interactions, 15, 1173–1180.PubMedCrossRefGoogle Scholar
  42. 42.
    Denny, T. P. (1999). Autoregulator-dependent control of extracellular polysaccharide production in phytopathogenic bacteria. European Journal of Plant Pathology, 105, 417–430.CrossRefGoogle Scholar
  43. 43.
    Engl, C., Waite, C. J., McKenna, J. F., Bennett, M. H., Hamann, T., & Buck, M. (2014). Chp8, a diguanylate cyclase from Pseudomonas syringae pv. Tomato DC3000, suppresses the pathogen-associated molecular pattern flagellin, increases extracellular polysaccharides, and promotes plant immune evasion. mBio, 5, e01168–e01114.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Flemming, H. C., & Wingender, J. (2010). The biofilm matrix. Nature Reviews Microbiology, 8, 623–633.PubMedCrossRefGoogle Scholar
  45. 45.
    Fray, R. G. (2002). Altering plant–microbe interaction through artificially manipulating bacterial quorum sensing. Annals of Botany, 89(3), 245–253.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Frederix, M., Edwards, A., Swiderska, A., Stanger, A., Karunakaran, R., Williams, A., Abbruscato, P., Sanchez-Contreras, M., Poole, P. S., & Downie, J. A. (2014). Mutation of praR in Rhizobium leguminosarum enhances root biofilms, improving nodulation competitiveness by increased expression of attachment proteins. Molecular Microbiology, 93, 464–478.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Fujishige, N. A., Kapadia, N. N., De Hoff, P. L., & Hirsch, A. M. (2006). Investigations of Rhizobium biofilm formation. FEMS Microbiology Ecology, 56, 195–206.PubMedCrossRefGoogle Scholar
  48. 48.
    Fuqua, C., Parsek, M. R., & Greenberg, E. P. (2001). Regulation of gene expression by cell-to-cell communication: Acyl-homoserine lactone quorum sensing. Annual Review of Genetics, 35, 439–468.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176, 269–275.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Gonzalez, J. E., Reuhs, B. L., & Walker, G. C. (1996). Low molecular weight EPS II of Rhizobium meliloti allows nodule invasion in Medicago sativa. Proceedings of the National Academy of Sciences of the United States of America, 93, 8636–8641.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Guimaraes, B. G., Barbosa, R. L., Soprano, A. S., Campos, B. M., de Souza, T. A., Tonoli, C. C., Leme, A. F., Murakami, M. T., & Benedetti, C. E. (2011). Plant pathogenic bacteria utilize biofilm growth-associated repressor (BigR), a novel winged-helix redox switch, to control hydrogen sulfide detoxification under hypoxia. The Journal of Biological Chemistry, 286, 26148–26157.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hacquard, S., Spaepen, S., Garrido-Oter, R., & Schulze-Lefert, P. (2017). Interplay between innate immunity and the plant microbiota. Annual Review of Phytopathology, 55, 565–589.PubMedCrossRefGoogle Scholar
  53. 53.
    Hartmann, A., Rothballer, M., Hense, B. A., & Schroder, P. (2014). Bacterial quorum sensing compounds are important modulators of microbe-plant interactions. Frontiers in Plant Science, 5, 131.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hinsa, S. M., Espinosa-Urgel, M., Ramos, J. L., & O’Toole, G. A. (2003). Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Molecular Microbiology, 49, 905–918.PubMedCrossRefGoogle Scholar
  55. 55.
    Hirano, S. S., & Upper, C. D. (2000). Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiology and Molecular Biology Reviews: MMBR, 64, 624–653.PubMedCrossRefGoogle Scholar
  56. 56.
    Huang, T. P., Lu, K. M., & Chen, Y. H. (2013). A novel two-component response regulator links rpf with biofilm formation and virulence of Xanthomonas axonopodis pv. citri. PLoS One, 8, e62824.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Huang, T. P., Tzeng, D. D., Wong, A. C., Chen, C. H., Lu, K. M., Lee, Y. H., Huang, W. D., Hwang, B. F., & Tzeng, K. C. (2012). DNA polymorphisms and biocontrol of Bacillus antagonistic to citrus bacterial canker with indication of the interference of phyllosphere biofilms. PLoS One, 7, e42124.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jarrell, K. F., & McBride, M. J. (2008). The surprisingly diverse ways that prokaryotes move. Nature Reviews Microbiology, 6, 466–476.PubMedCrossRefGoogle Scholar
  59. 59.
    Joshi, J. R., Burdman, S., Lipsky, A., Yariv, S., & Yedidia, I. (2016a). Plant phenolic acids affect the virulence of Pectobacterium aroidearum and P. carotovorum ssp. brasiliense via quorum sensing regulation. Molecular Plant Pathology, 17, 487–500.PubMedCrossRefGoogle Scholar
  60. 60.
    Joshi, J. R., Khazanov, N., Senderowitz, H., Burdman, S., Lipsky, A., & Yedidia, I. (2016b). Plant phenolic volatiles inhibit quorum sensing in pectobacteria and reduce their virulence by potential binding to ExpI and ExpR proteins. Scientific Reports, 6, 38126.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Kaplan, H. B., & Greenberg, E. P. (1985). Diffusion of autoinducer is involved in regulation of the Vibrio fischeri luminescence system. Journal of Bacteriology, 163, 1210–1214.PubMedPubMedCentralGoogle Scholar
  62. 62.
    Kaufmann, G. F., Sartorio, R., Lee, S. H., Rogers, C. J., Meijler, M. M., Moss, J. A., Clapham, B., Brogan, A. P., Dickerson, T. J., & Janda, K. D. (2005). Revisiting quorum sensing: Discovery of additional chemical and biological functions for 3-oxo-N-acylhomoserine lactones. Proceedings of the National Academy of Sciences of the United States of America, 102, 309–314.PubMedCrossRefGoogle Scholar
  63. 63.
    Klausen, M., Gjermansen, M., Kreft, J. U., & Tolker-Nielsen, T. (2006). Dynamics of development and dispersal in sessile microbial communities: Examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiology Letters, 261, 1–11.PubMedCrossRefGoogle Scholar
  64. 64.
    Klausen, M., Heydorn, A., Ragas, P., Lambertsen, L., Aaes-Jorgensen, A., Molin, S., & Tolker-Nielsen, T. (2003). Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Molecular Microbiology, 48, 1511–1524.PubMedCrossRefGoogle Scholar
  65. 65.
    Klemm, P., & Schembri, M. A. (2000). Bacterial adhesins: Function and structure. International Journal of Medical Microbiology: IJMM, 290, 27–35.PubMedCrossRefGoogle Scholar
  66. 66.
    Koczan, J. M., McGrath, M. J., Zhao, Y., & Sundin, G. W. (2009). Contribution of Erwinia amylovora exopolysaccharides amylovoran and levan to biofilm formation: Implications in pathogenicity. Phytopathology, 99, 1237–1244.PubMedCrossRefGoogle Scholar
  67. 67.
    Kragh, K. N., Hutchison, J. B., Melaugh, G., Rodesney, C., Roberts, A. E., Irie, Y., Jensen, P. O., Diggle, S. P., Allen, R. J., Gordon, V., & Bjarnsholt, T. (2016). Role of multicellular aggregates in biofilm formation. mBio, 7, e00237.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Kubheka, G. C., Coutinho, T. A., Moleleki, N., & Moleleki, L. N. (2013). Colonization patterns of an mCherry-tagged Pectobacterium carotovorum subsp. brasiliense strain in potato plants. Phytopathology, 103, 1268–1279.PubMedCrossRefGoogle Scholar
  69. 69.
    Kus, J. V., Zaton, K., Sarkar, R., & Cameron, R. K. (2002). Age-related resistance in Arabidopsis is a developmentally regulated defense response to Pseudomonas syringae. Plant Cell, 14, 479–490.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    LaSarre, B., & Federle, M. J. (2013). Exploiting quorum sensing to confuse bacterial pathogens. Microbiology and Molecular Biology Reviews: MMBR, 77, 73–111.PubMedCrossRefGoogle Scholar
  71. 71.
    Laus, M. C., Logman, T. J., Lamers, G. E., Van Brussel, A. A., Carlson, R. W., & Kijne, J. W. (2006). A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Molecular Microbiology, 59, 1704–1713.PubMedCrossRefGoogle Scholar
  72. 72.
    Lee, J., Teitzel, G. M., Munkvold, K., del Pozo, O., Martin, G. B., Michelmore, R. W., & Greenberg, J. T. (2012). Type III secretion and effectors shape the survival and growth pattern of Pseudomonas syringae on leaf surfaces. Plant Physiology, 158, 1803–1818.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Lee, J., & Zhang, L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 6, 26–41.CrossRefGoogle Scholar
  74. 74.
    Lu, X. H., An, S. Q., Tang, D. J., McCarthy, Y., Tang, J. L., Dow, J. M., & Ryan, R. P. (2012). RsmA regulates biofilm formation in Xanthomonas campestris through a regulatory network involving cyclic di-GMP and the Clp transcription factor. PLoS One, 7, e52646.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Macho, A. P., & Zipfel, C. (2015). Targeting of plant pattern recognition receptor-triggered immunity by bacterial type-III secretion system effectors. Current Opinion in Microbiology, 23, 14–22.PubMedCrossRefGoogle Scholar
  76. 76.
    Maddula, V. S., Zhang, Z., Pierson, E. A., & Pierson, L. S., 3rd. (2006). Quorum sensing and phenazines are involved in biofilm formation by Pseudomonas chlororaphis (aureofaciens) strain 30–84. Microbial Ecology, 52, 289–301.PubMedCrossRefGoogle Scholar
  77. 77.
    McLean, R. J., Whiteley, M., Stickler, D. J., & Fuqua, W. C. (1997). Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiology Letters, 154, 259–263.PubMedCrossRefGoogle Scholar
  78. 78.
    Mhedbi-Hajri, N., Darrasse, A., Pigne, S., Durand, K., Fouteau, S., Barbe, V., Manceau, C., Lemaire, C., & Jacques, M. A. (2011). Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads. BMC Evolutionary Biology, 11, 67.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Molina, M. A., Ramos, J.-L., & Espinosa-Urgel, M. (2003). Plant-associated biofilms. Reviews in Environmental Science and Biotechnology, 2, 99–108.CrossRefGoogle Scholar
  80. 80.
    Mora, P., Rosconi, F., Franco Fraguas, L., & Castro-Sowinski, S. (2008). Azospirillum brasilense Sp7 produces an outer-membrane lectin that specifically binds to surface-exposed extracellular polysaccharide produced by the bacterium. Archives of Microbiology, 189, 519–524.PubMedCrossRefGoogle Scholar
  81. 81.
    More, M. I., Finger, L. D., Stryker, J. L., Fuqua, C., Eberhard, A., & Winans, S. C. (1996). Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science, 272, 1655–1658.PubMedCrossRefGoogle Scholar
  82. 82.
    Morris, C. E., Monier, J., & Jacques, M. (1997). Methods for observing microbial biofilms directly on leaf surfaces and recovering them for isolation of culturable microorganisms. Applied and Environmental Microbiology, 63, 1570–1576.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Morris, C. E., & Monier, J. M. (2003). The ecological significance of biofilm formation by plant-associated bacteria. Annual Review of Phytopathology, 41, 429–453.PubMedCrossRefGoogle Scholar
  84. 84.
    O’Toole, G. A., & Kolter, R. (1998). Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Molecular Microbiology, 30, 295–304.PubMedCrossRefGoogle Scholar
  85. 85.
    Paczkowski, J. E., Mukherjee, S., McCready, A. R., Cong, J. P., Aquino, C. J., Kim, H., Henke, B. R., Smith, C. D., & Bassler, B. L. (2017). Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. The Journal of Biological Chemistry, 292, 4064–4076.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Palmer, A. G., Senechal, A. C., Mukherjee, A., Ane, J. M., & Blackwell, H. E. (2014). Plant responses to bacterial N-acyl L-homoserine lactones are dependent on enzymatic degradation to L-homoserine. ACS Chemical Biology, 9, 1834–1845.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Parsek, M. R., & Singh, P. K. (2003). Bacterial biofilms: An emerging link to disease pathogenesis. Annual Review of Microbiology, 57, 677–701.PubMedCrossRefGoogle Scholar
  88. 88.
    Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences, 96, 4360–4365.CrossRefGoogle Scholar
  89. 89.
    Pearson, J. P., Van Delden, C., & Iglewski, B. H. (1999). Active efflux and diffusion are involved in transport of Pseudomonas aeruginosa cell-to-cell signals. Journal of Bacteriology, 181, 1203–1210.PubMedPubMedCentralGoogle Scholar
  90. 90.
    Perez-Mendoza, D., Aragon, I. M., Prada-Ramirez, H. A., Romero-Jimenez, L., Ramos, C., Gallegos, M. T., & Sanjuan, J. (2014). Responses to elevated c-di-GMP levels in mutualistic and pathogenic plant-interacting bacteria. PLoS One, 9, e91645.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Perez-Mendoza, D., Rodriguez-Carvajal, M. A., Romero-Jimenez, L., Farias Gde, A., Lloret, J., Gallegos, M. T., & Sanjuan, J. (2015). Novel mixed-linkage beta-glucan activated by c-di-GMP in Sinorhizobium meliloti. Proceedings of the National Academy of Sciences of the United States of America, 112, E757–E765.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Petrova, O. E., & Sauer, K. (2012). Sticky situations: Key components that control bacterial surface attachment. Journal of Bacteriology, 194, 2413–2425.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Pratt, L. A., & Kolter, R. (1998). Genetic analysis of Escherichia coli biofilm formation: Roles of flagella, motility, chemotaxis and type I pili. Molecular Microbiology, 30, 285–293.PubMedCrossRefGoogle Scholar
  94. 94.
    Prithiviraj, B., Bais, H. P., Weir, T., Suresh, B., Najarro, E. H., Dayakar, B. V., Schweizer, H. P., & Vivanco, J. M. (2005). Down regulation of virulence factors of Pseudomonas aeruginosa by salicylic acid attenuates its virulence on Arabidopsis thaliana and Caenorhabditis elegans. Infection and Immunity, 73, 5319–5328.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Qin, Y., Luo, Z. Q., Smyth, A. J., Gao, P., Beck von Bodman, S., & Farrand, S. K. (2000). Quorum-sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. The EMBO Journal, 19, 5212–5221.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Raymond, B., Young, J. C., Pallett, M., Endres, R. G., Clements, A., & Frankel, G. (2013). Subversion of trafficking, apoptosis, and innate immunity by type III secretion system effectors. Trends in Microbiology, 21, 430–441.PubMedCrossRefGoogle Scholar
  97. 97.
    Reen, F. J., Gutierrez-Barranquero, J. A., Parages, M. L., & O’Gara, F. (2018). Coumarin: A novel player in microbial quorum sensing and biofilm formation inhibition. Applied Microbiology and Biotechnology, 102, 2063–2073.PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Rigano, L. A., Siciliano, F., Enrique, R., Sendin, L., Filippone, P., Torres, P. S., Questa, J., Dow, J. M., Castagnaro, A. P., Vojnov, A. A., & Marano, M. R. (2007). Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Molecular Plant-Microbe Interactions, 20, 1222–1230.PubMedCrossRefGoogle Scholar
  99. 99.
    Romero, M., Acuna, L., & Otero, A. (2012). Patents on quorum quenching: Interfering with bacterial communication as a strategy to fight infections. Recent Patents on Biotechnology, 6, 2–12.PubMedCrossRefGoogle Scholar
  100. 100.
    Ryan, R. P. (2013). Cyclic di-GMP signalling and the regulation of bacterial virulence. Microbiology, 159, 1286–1297.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Ryjenkov, D. A., Tarutina, M., Moskvin, O. V., & Gomelsky, M. (2005). Cyclic diguanylate is a ubiquitous signaling molecule in bacteria: Insights into biochemistry of the GGDEF protein domain. Journal of Bacteriology, 187, 1792–1798.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Sahu, S. K., Zheng, P., & Yao, N. (2018). Niclosamide blocks rice leaf blight by inhibiting biofilm formation of Xanthomonas oryzae. Frontiers in Plant Science, 9, 408.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Sanchez, L., Courteaux, B., Hubert, J., Kauffmann, S., Renault, J.-H., Clément, C., Baillieul, F., & Dorey, S. (2012). Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. Plant Physiology, 160, 1630–1641.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Schaefer, A. L., Val, D. L., Hanzelka, B. L., Cronan, J. E., Jr., & Greenberg, E. P. (1996). Generation of cell-to-cell signals in quorum sensing: Acyl homoserine lactone synthase activity of a purified Vibrio fischeri LuxI protein. Proceedings of the National Academy of Sciences of the United States of America, 93, 9505–9509.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Schenk, S. T., Hernandez-Reyes, C., Samans, B., Stein, E., Neumann, C., Schikora, M., Reichelt, M., Mithofer, A., Becker, A., Kogel, K. H., & Schikora, A. (2014). N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell, 26, 2708–2723.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Schmidt, A. J., Ryjenkov, D. A., & Gomelsky, M. (2005). The ubiquitous protein domain EAL is a cyclic diguanylate-specific phosphodiesterase: Enzymatically active and inactive EAL domains. Journal of Bacteriology, 187, 4774–4781.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Schuhegger, R., Ihring, A., Gantner, S., Bahnweg, G., Knappe, C., Vogg, G., Hutzler, P., Schmid, M., Van Breusegem, F., Eberl, L., Hartmann, A., & Langebartels, C. (2006). Induction of systemic resistance in tomato by N-acyl-L-homoserine lactone-producing rhizosphere bacteria. Plant, Cell & Environment, 29, 909–918.CrossRefGoogle Scholar
  108. 108.
    Shepherd, R. W., & Lindow, S. E. (2009). Two dissimilar N-acyl-homoserine lactone acylases of Pseudomonas syringae influence colony and biofilm morphology. Applied and Environmental Microbiology, 75, 45–53.PubMedCrossRefGoogle Scholar
  109. 109.
    Singh, A., Gupta, R., Tandon, S., & Pandey, R. (2017). Thyme oil reduces biofilm formation and impairs virulence of Xanthomonas oryzae. Frontiers in Microbiology, 8, 1074.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Singh, P. K., Parsek, M. R., Greenberg, E. P., & Welsh, M. J. (2002). A component of innate immunity prevents bacterial biofilm development. Nature, 417, 552–555.PubMedCrossRefGoogle Scholar
  111. 111.
    Smith, R. S., Fedyk, E. R., Springer, T. A., Mukaida, N., Iglewski, B. H., & Phipps, R. P. (2001). IL-8 production in human lung fibroblasts and epithelial cells activated by the Pseudomonas autoinducer N-3-oxododecanoyl homoserine lactone is transcriptionally regulated by NF-kappa B and activator protein-2. Journal of Immunology (Baltimore, Md 1950), 167, 366–374.CrossRefGoogle Scholar
  112. 112.
    Sondermann, H., Shikuma, N. J., & Yildiz, F. H. (2012). You’ve come a long way: c-di-GMP signaling. Current Opinion in Microbiology, 15, 140–146.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Steindler, L., & Venturi, V. (2007). Detection of quorum-sensing N-acyl homoserine lactone signal molecules by bacterial biosensors. FEMS Microbiology Letters, 266, 1–9.PubMedCrossRefGoogle Scholar
  114. 114.
    Stoodley, P., Sauer, K., Davies, D. G., & Costerton, J. W. (2002). Biofilms as complex differentiated communities. Annual Review of Microbiology, 56, 187–209.PubMedCrossRefGoogle Scholar
  115. 115.
    Subramoni, S., Nathoo, N., Klimov, E., & Yuan, Z. C. (2014). Agrobacterium tumefaciens responses to plant-derived signaling molecules. Frontiers in Plant Science, 5, 322.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Taghavi, S., Wu, X., Ouyang, L., Zhang, Y. B., Stadler, A., McCorkle, S., Zhu, W., Maslov, S., & van der Lelie, D. (2015). Transcriptional responses to sucrose mimic the plant-associated life style of the plant growth promoting endophyte Enterobacter sp. 638. PLoS One, 10, e0115455.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Taguchi, F., Suzuki, T., Inagaki, Y., Toyoda, K., Shiraishi, T., & Ichinose, Y. (2010). The siderophore pyoverdine of Pseudomonas syringae pv. tabaci 6605 is an intrinsic virulence factor in host tobacco infection. Journal of Bacteriology, 192, 117–126.PubMedCrossRefGoogle Scholar
  118. 118.
    Tomlinson, A. D., & Fuqua, C. (2009). Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens. Current Opinion in Microbiology, 12, 708–714.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Vande Broek, A., Lambrecht, M., & Vanderleyden, J. (1998). Bacterial chemotactic motility is important for the initiation of wheat root colonization by Azospirillum brasilense. Microbiology, 144(Pt 9), 2599–2606.PubMedCrossRefGoogle Scholar
  120. 120.
    Visick, K. L., & Fuqua, C. (2005). Decoding microbial chatter: Cell-cell communication in bacteria. Journal of Bacteriology, 187, 5507–5519.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    von Bodman, S. B., Majerczak, D. R., & Coplin, D. L. (1998). A negative regulator mediates quorum-sensing control of exopolysaccharide production in Pantoea stewartii subsp. stewartii. Proceedings of the National Academy of Sciences of the United States of America, 95, 7687–7692.CrossRefGoogle Scholar
  122. 122.
    Walker, T. S., Bais, H. P., Deziel, E., Schweizer, H. P., Rahme, L. G., Fall, R., & Vivanco, J. M. (2004). Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiology, 134, 320–331.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Wang, L., Makino, S., Subedee, A., & Bogdanove, A. J. (2007). Novel candidate virulence factors in rice pathogen Xanthomonas oryzae pv. oryzicola as revealed by mutational analysis. Applied and Environmental Microbiology, 73, 8023–8027.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Wang, T., Guan, W., Huang, Q., Yang, Y., Yan, W., Sun, B., & Zhao, T. (2016). Quorum-sensing contributes to virulence, twitching motility, seed attachment and biofilm formation in the wild type strain Aac-5 of Acidovorax citrulli. Microbial Pathogenesis, 100, 133–140.PubMedCrossRefGoogle Scholar
  125. 125.
    Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346.CrossRefGoogle Scholar
  126. 126.
    Watson, W. T., Minogue, T. D., Val, D. L., von Bodman, S. B., & Churchill, M. E. (2002). Structural basis and specificity of acyl-homoserine lactone signal production in bacterial quorum sensing. Molecular Cell, 9, 685–694.PubMedCrossRefGoogle Scholar
  127. 127.
    Welch, M., Todd, D. E., Whitehead, N. A., McGowan, S. J., Bycroft, B. W., & Salmond, G. P. (2000). N-acyl homoserine lactone binding to the CarR receptor determines quorum-sensing specificity in Erwinia. The EMBO Journal, 19, 631–641.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    White, C. E., & Winans, S. C. (2005). Identification of amino acid residues of the Agrobacterium tumefaciens quorum-sensing regulator TraR that are critical for positive control of transcription. Molecular Microbiology, 55, 1473–1486.PubMedCrossRefGoogle Scholar
  129. 129.
    Whitehead, N. A., Barnard, A. M., Slater, H., Simpson, N. J., & Salmond, G. P. (2001). Quorum-sensing in gram-negative bacteria. FEMS Microbiology Reviews, 25, 365–404.PubMedCrossRefGoogle Scholar
  130. 130.
    Wilson, D. C., Kempthorne, C. J., Carella, P., Liscombe, D. K., & Cameron, R. K. (2017). Age-related resistance in Arabidopsis thaliana involves the MADS-domain transcription factor short vegetative phase and direct action of salicylic acid on Pseudomonas syringae. Molecular Plant-Microbe Interactions, 30, 919–929.PubMedCrossRefGoogle Scholar
  131. 131.
    Wood, T. K., Gonzalez Barrios, A. F., Herzberg, M., & Lee, J. (2006). Motility influences biofilm architecture in Escherichia coli. Applied Microbiology and Biotechnology, 72, 361–367.PubMedCrossRefGoogle Scholar
  132. 132.
    Xu, J., Kim, J., Danhorn, T., Merritt, P. M., & Fuqua, C. (2012). Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Research in Microbiology, 163, 674–684.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Xu, J., Zhou, L., Venturi, V., He, Y. W., Kojima, M., Sakakibari, H., Hofte, M., & De Vleesschauwer, D. (2015). Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions. BMC Plant Biology, 15, 10.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Yang, L., Rybtke, M. T., Jakobsen, T. H., Hentzer, M., Bjarnsholt, T., Givskov, M., & Tolker-Nielsen, T. (2009). Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrobial Agents and Chemotherapy, 53, 2432–2443.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Yu, X., Liang, X., Liu, K., Dong, W., Wang, J., & Zhou, M. G. (2015). The thiG gene is required for full virulence of Xanthomonas oryzae pv. oryzae by preventing cell aggregation. PLoS One, 10, e0134237.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zaini, P. A., Burdman, S., Igo, M. M., Parker, J. K., De La Fuente, L. (2016). Chapter 5: Fimbrial and afimbrial adhesins involved in bacterial attachment to surfaces. In F. Leonardo De La, M. I. Michele, K. P. Jennifer, B. Saul, & A. Z. Paulo (Eds.), Virulence mechanisms of plant-pathogenic bacteria (pp. 73–106). The American Phytopathological Society.Google Scholar
  137. 137.
    Zhang, L., Ruan, L., Hu, C., Wu, H., Chen, S., Yu, Z., & Sun, M. (2007). Fusion of the genes for AHL-lactonase and S-layer protein in Bacillus thuringiensis increases its ability to inhibit soft rot caused by Erwinia carotovora. Applied Microbiology and Biotechnology, 74, 667–675.PubMedCrossRefGoogle Scholar
  138. 138.
    Zhu, J., & Winans, S. C. (2001). The quorum-sensing transcriptional regulator TraR requires its cognate signaling ligand for protein folding, protease resistance, and dimerization. Proceedings of the National Academy of Sciences of the United States of America, 98, 1507–1512.PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Zimaro, T., Thomas, L., Marondedze, C., Sgro, G. G., Garofalo, C. G., Ficarra, F. A., Gehring, C., Ottado, J., & Gottig, N. (2014). The type III protein secretion system contributes to Xanthomonas citri subsp. citri biofilm formation. BMC Microbiology, 14, 96.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rajinikanth Mohan
    • 1
    Email author
  • Marie Benton
    • 1
  • Emily Dangelmaier
    • 1
  • Zhengqing Fu
    • 2
  • Akila Chandra Sekhar
    • 3
  1. 1.Department of BiologyColgate UniversityHamiltonUSA
  2. 2.Department of BiologyUniversity of South CarolinaColumbiaUSA
  3. 3.Molecular Genetics & Functional Genomics Laboratory, Department of Biotechnology, School of Life SciencesYogi Vemana UniversityKadapaIndia

Personalised recommendations