Quorum Sensing Regulated Swarming Motility and Migratory Behavior in Bacteria
Abstract
Bacteria produce and sense chemical signal molecules, communicate with closet neighbors. Chemical signals are diverse and comprise cyclic and linear peptides, short and long chain γ-quinolones, N-acyl-homoserine lactones (AHL) and unsaturated fatty acids. These signaling molecules are collectively called autoinducers. Certain signals are readily diffusible small molecules, while others are hydrophobic and can be vesicle or membrane -associated. Several chemical signals are vastly genus or species specific, while LuxS gene product furanosyl borate diester, a more universally synthesized and recognized molecule. It is assumed that bacteria use these auto inducer molecules not only to identify their neighbors and cell density, but also to govern some aspects of their environment, such as confinement and diffusion. In a broad sense, quorum sensing allows harmonization of cell density wide activities, together with virulence factor production, biofilm dynamics, bioluminescence and swarming motility on surfaces. Swarming motility is a flagella-driven movement of bacterial cells through it can spread as a biofilm over a surface. Different chemical signals produced either by bacteria (AHL) may persuade the QS regulated swarming activities in bacteria. This review emphasizes the role of AHL and other low-molecular-mass signal molecules involvement of in swarming motility of bacteria.
Keywords
Quorum sensing AHL Swarming motility Quorum-sensing controlled gene expression systemsNotes
Acknowledgements
PVBC is grateful to Krishna University for providing necessary facilities to carry out the research work and for extending constant support.
Conflict of Interest
The author declares that there is no conflict of interest.
References
- 1.Abdel-Mawgoud, A. M., Hausmann, R., Lépine, F., Müller, M. M., & Déziel, E. (2011). Rhamnolipids: Detection, analysis, biosynthesis, genetic regulation, and bioengineering of production. In Biosurfactants (pp. 13–55). Berlin: Springer.Google Scholar
- 2.Atkinson, S., Chang, C. Y., Sockett, R. E., Cámara, M., & Williams, P. (2006). Quorum sensing in Yersinia enterocolitica controls swimming and swarming motility. Journal of Bacteriology, 188(4), 1451–1461.PubMedPubMedCentralCrossRefGoogle Scholar
- 3.Baker, A. E., Diepold, A., Kuchma, S. L., Scott, J. E., Ha, D. G., Orazi, G., …, O’Toole, G. A. (2016). PilZ domain protein FlgZ mediates cyclic di-GMP-dependent swarming motility control in Pseudomonas aeruginosa. Journal of bacteriology, 198(13), 1837–1846.PubMedPubMedCentralCrossRefGoogle Scholar
- 4.Banerjee, M., Moulick, S., Bhattacharya, K. K., Parai, D., Chattopadhyay, S., & Mukherjee, S. K. (2017). Attenuation of Pseudomonas aeruginosa quorum sensing, virulence and biofilm formation by extracts of Andrographis paniculata. Microbial Pathogenesis, 113, 85–93.PubMedCrossRefGoogle Scholar
- 5.Bassler, B., & Vogel, J. (2013). Bacterial regulatory mechanisms: the gene and beyond. Current Opinion in Microbiology, 16(2), 109.PubMedCrossRefGoogle Scholar
- 6.Belas, R., & Suvanasuthi, R. (2005). The ability of Proteus mirabilis to sense surfaces and regulate virulence gene expression involves FliL, a flagellar basal body protein. Journal of bacteriology, 187(19), 6789–6803.PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Boles, B. R., Thoendel, M., & Singh, P. K. (2005). Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Molecular Microbiology, 57(5), 1210–1223.PubMedCrossRefGoogle Scholar
- 8.Caiazza, N. C., Shanks, R. M., & O’toole, G. A. (2005). Rhamnolipids modulate swarming motility patterns of Pseudomonas aeruginosa. Journal of Bacteriology, 187(21), 7351–7361.PubMedPubMedCentralCrossRefGoogle Scholar
- 9.Chatterjee, M., D’Morris, S., Paul, V., Warrier, S., Vasudevan, A. K., Vanuopadath, M., …, Biswas, R. (2017). Mechanistic understanding of Phenyllactic acid mediated inhibition of quorum sensing and biofilm development in Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 101(22), 8223–8236.PubMedCrossRefGoogle Scholar
- 10.Costa, S. G. V. A. O., Déziel, E., & Lépine, F. (2011). Characterization of rhamnolipid production by Burkholderia glumae. Letters in Applied Microbiology, 53(6), 620–627.PubMedCrossRefGoogle Scholar
- 11.Daniels, R., Reynaert, S., Hoekstra, H., Verreth, C., Janssens, J., Braeken, K., …, De Vos, D. E. (2006). Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proceedings of the National Academy of Sciences, 103(40), 14965–14970.CrossRefGoogle Scholar
- 12.Daniels, R., Vanderleyden, J., & Michiels, J. (2004). Quorum sensing and swarming migration in bacteria. FEMS Microbiology Reviews, 28(3), 261–289.PubMedCrossRefPubMedCentralGoogle Scholar
- 13.de la Fuente-Núñez, C., Korolik, V., Bains, M., Nguyen, U., Breidenstein, E. B., Horsman, S., …, Hancock, R. E. (2012). Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrobial Agents and Chemotherapy, 56(5), 2696–2704.PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Deng, Y., Schmid, N., Wang, C., Wang, J., Pessi, G., Wu, D., …, Song, H. (2012). Cis-2-dodecenoic acid receptor RpfR links quorum-sensing signal perception with regulation of virulence through cyclic dimeric guanosine monophosphate turnover. Proceedings of the National Academy of Sciences, 109(38), 15479–15484.CrossRefGoogle Scholar
- 15.Deziel, E., Lepine, F., Milot, S., & Villemur, R. (2003). rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy) alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology, 149(8), 2005–2013.PubMedCrossRefGoogle Scholar
- 16.Dubeau, D., Déziel, E., Woods, D. E., & Lépine, F. (2009). Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. BMC Microbiology, 9(1), 263.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Dusane, D. H., Zinjarde, S. S., Venugopalan, V. P., Mclean, R. J., Weber, M. M., & Rahman, P. K. (2010). Quorum sensing: Implications on rhamnolipid biosurfactant production. Biotechnology and Genetic Engineering Reviews, 27(1), 159–184.PubMedCrossRefPubMedCentralGoogle Scholar
- 18.Eberl, L., Christiansen, G., Molin, S., & Givskov, M. (1996). Differentiation of Serratia liquefaciens into swarm cells is controlled by the expression of the flhD master operon. Journal of Bacteriology, 178(2), 554–559.PubMedPubMedCentralCrossRefGoogle Scholar
- 19.Enos-Berlage, J. L., & McCarter, L. L. (2000). Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. Journal of Bacteriology, 182(19), 5513–5520.PubMedPubMedCentralCrossRefGoogle Scholar
- 20.Enos-Berlage, J. L., Guvener, Z. T., Keenan, C. E., & McCarter, L. L. (2005). Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Molecular Microbiology, 55(4), 1160–1182.PubMedCrossRefGoogle Scholar
- 21.Falcone, M., Ferrara, S., Rossi, E., Johansen, H. K., Molin, S., & Bertoni, G. (2018). The small RNA ersA of Pseudomonas aeruginosa contributes to biofilm development and motility through post-transcriptional modulation of AmrZ. Frontiers in Microbiology, 9, 238.PubMedPubMedCentralCrossRefGoogle Scholar
- 22.Fraser, G. M., & Hughes, C. (1999). Swarming motility. Current Opinion in Microbiology, 2(6), 630–635.PubMedCrossRefGoogle Scholar
- 23.Fraser, G. M., Claret, L., Furness, R., Gupta, S., & Hughes, C. (2002). Swarming-coupled expression of the Proteus mirabilis hpmBA haemolysin operona. Microbiology, 148(7), 2191–2201.PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Fukami, J., Abrantes, J. L. F., del Cerro, P., Nogueira, M. A., Ollero, F. J., Megías, M., & Hungria, M. (2018). Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6. Archives of Microbiology, 200(1), 47–56.PubMedCrossRefGoogle Scholar
- 25.Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269.PubMedPubMedCentralCrossRefGoogle Scholar
- 26.Goodman, A. L., Kulasekara, B., Rietsch, A., Boyd, D., Smith, R. S., & Lory, S. (2004). A signaling network reciprocally regulates genes associated with acute infection and chronic persistence in Pseudomonas aeruginosa. Developmental Cell, 7(5), 745–754.PubMedCrossRefGoogle Scholar
- 27.Güvener, Z. T., & McCarter, L. L. (2003). Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. Journal of Bacteriology, 185(18), 5431–5441.PubMedPubMedCentralCrossRefGoogle Scholar
- 28.Hall, A. N., Subramanian, S., Oshiro, R. T., Canzoneri, A. K., & Kearns, D. B. (2018). SwrD (YlzI) promotes swarming in Bacillus subtilis by increasing power to flagellar motors. Journal of Bacteriology, 200(2), e00529–e00517.PubMedGoogle Scholar
- 29.Harshey, R. M. (2003). Bacterial motility on a surface: Many ways to a common goal. Annual Reviews in Microbiology, 57(1), 249–273.CrossRefGoogle Scholar
- 30.Häuβler, S., Rohde, M., Von Neuhoff, N., Nimtz, M., & Steinmetz, I. (2003). Structural and functional cellular changes induced by Burkholderia pseudomallei rhamnolipid. Infection and Immunity, 71(5), 2970–2975.PubMedCentralCrossRefPubMedGoogle Scholar
- 31.Hejazi, A., & Falkiner, F. R. (1997). Serratia marcescens. Journal of Medical Microbiology, 46(11), 903–912.PubMedCrossRefGoogle Scholar
- 32.Henke, J. M., & Bassler, B. L. (2004). Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. Journal of Bacteriology, 186(12), 3794–3805.PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Huber, B., Riedel, K., Hentzer, M., Heydorn, A., Gotschlich, A., Givskov, M., …, Eberl, L. (2001). The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology, 147(9), 2517–2528.PubMedCrossRefGoogle Scholar
- 34.Husain, F. M., Ahmad, I., Al-thubiani, A. S., Abulreesh, H. H., AlHazza, I. M., & Aqil, F. (2017). Leaf Extracts of Mangifera indica L. Inhibit quorum sensing–regulated production of virulence factors and biofilm in test bacteria. Frontiers in Microbiology, 8, 727.PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Inoue, T., Shingaki, R., & Fukui, K. (2008). Inhibition of swarming motility of Pseudomonas aeruginosa by branched-chain fatty acids. FEMS Microbiology Letters, 281(1), 81–86.PubMedCrossRefGoogle Scholar
- 36.Jaques, S., & McCarter, L. L. (2006). Three new regulators of swarming in Vibrio parahaemolyticus. Journal of Bacteriology, 188(7), 2625–2635.PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Jensen, P. Ø., Bjarnsholt, T., Phipps, R., Rasmussen, T. B., Calum, H., Christoffersen, L., ... & Høiby, N. (2007). Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 153(5), 1329–1338.PubMedCrossRefGoogle Scholar
- 38.Kearns, D. B., Chu, F., Rudner, R., & Losick, R. (2004). Genes governing swarming in Bacillus subtilisand evidence for a phase variation mechanism controlling surface motility. Molecular Microbiology, 52, 357–369.PubMedCrossRefGoogle Scholar
- 39.Kearns, D. B. (2010). A field guide to bacterial swarming motility. Nature Reviews Microbiology, 8(9), 634.PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Kim, W., & Surette, M. G. (2004). Metabolic differentiation in actively swarming Salmonella. Molecular Microbiology, 54(3), 702–714.PubMedCrossRefGoogle Scholar
- 41.Klausen, M., Aaes-Jørgensen, A., Molin, S., & Tolker-Nielsen, T. (2003). Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Molecular Microbiology, 50(1), 61–68.PubMedCrossRefGoogle Scholar
- 42.Köhler, T., Curty, L. K., Barja, F., Van Delden, C., & Pechère, J. C. (2000). Swarming of Pseudomonas aeruginosa is dependent on cell-to-cell signaling and requires flagella and pili. Journal of Bacteriology, 182(21), 5990–5996.PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Kuchma, S. L., Brothers, K. M., Merritt, J. H., Liberati, N. T., Ausubel, F. M., & O’Toole, G. A. (2007). BifA, a cyclic-Di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. Journal of Bacteriology, 189(22), 8165–8178.PubMedPubMedCentralCrossRefGoogle Scholar
- 44.Kuchma, S. L., Delalez, N. J., Filkins, L. M., Snavely, E. A., Armitage, J. P., & O’Toole, G. A. (2015). Cyclic di-GMP-mediated repression of swarming motility by Pseudomonas aeruginosa PA14 requires the MotAB stator. Journal of Bacteriology, 197(3), 420–430.PubMedPubMedCentralCrossRefGoogle Scholar
- 45.Kumar, L., Chhibber, S., Kumar, R., Kumar, M., & Harjai, K. (2015). Zingerone silences quorum sensing and attenuates virulence of Pseudomonas aeruginosa. Fitoterapia, 102, 84–95.PubMedCrossRefGoogle Scholar
- 46.Lai, H. C., Soo, P. C., Wei, J. R., Yi, W. C., Liaw, S. J., Horng, Y. T., …, Williams, P. (2005). The RssAB two-component signal transduction system in Serratia marcescens regulates swarming motility and cell envelope architecture in response to exogenous saturated fatty acids. Journal of bacteriology, 187(10), 3407–3414.PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Lapouge, K., Schubert, M., Allain, F. H. T., & Haas, D. (2008). Gac/Rsm signal transduction pathway of γ-proteobacteria: From RNA recognition to regulation of social behaviour. Molecular Microbiology, 67(2), 241–253.PubMedCrossRefGoogle Scholar
- 48.Liaw, S. J., Lai, H. C., & Wang, W. B. (2004). Modulation of swarming and virulence by fatty acids through the RsbA protein in Proteus mirabilis. Infection and Immunity, 72(12), 6836–6845.PubMedPubMedCentralCrossRefGoogle Scholar
- 49.Liaw, S. J., Lai, H. C., Ho, S. W., Luh, K. T., & Wang, W. B. (2003). Role of RsmA in the regulation of swarming motility and virulence factor expression in Proteus mirabilis. Journal of Medical Microbiology, 52(1), 19–28.PubMedCrossRefGoogle Scholar
- 50.Little, K., Tipping, M. J., & Gibbs, K. A. (2018). Swarmer cell development of the bacterium Proteus mirabilis requires the conserved ECA biosynthesis gene, rffG. bioRxiv, 198622.Google Scholar
- 51.Liu, Y., Lardi, M., Pedrioli, A., Eberl, L., & Pessi, G. (2017). NtrC-dependent control of exopolysaccharide synthesis and motility in Burkholderia cenocepacia H111. PLoS One, 12(6), e0180362.PubMedPubMedCentralCrossRefGoogle Scholar
- 52.Masduki, A., Nakamura, J., Ohga, T., Umezaki, R., Kato, J., & Ohtake, H. (1995). Isolation and characterization of chemotaxis mutants and genes of Pseudomonas aeruginosa. Journal of Bacteriology, 177(4), 948–952.PubMedPubMedCentralCrossRefGoogle Scholar
- 53.Mattingly, A. E., Kamatkar, N. G., Borlee, B. R., & Shrout, J. D. (2018). Multiple environmental factors influence the importance of the phosphodiesterase DipA upon Pseudomonas aeruginosa swarming. Applied and Environmental Microbiology, 84(7), e02847–e02817.PubMedPubMedCentralCrossRefGoogle Scholar
- 54.Merritt, J. H., Brothers, K. M., Kuchma, S. L., & O’toole, G. A. (2007). SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. Journal of Bacteriology, 189(22), 8154–8164.PubMedPubMedCentralCrossRefGoogle Scholar
- 55.Michaels, B., & Tisa, L. S. (2011). Swarming motility by Photorhabdus temperata is influenced by environmental conditions and uses the same flagella as that used in swimming motility. Canadian Journal of Microbiology, 57(3), 196–203.PubMedCrossRefGoogle Scholar
- 56.Milton, D. L. (2006). Quorum sensing in vibrios: Complexity for diversification. International Journal of Medical Microbiology, 296(2–3), 61–71.CrossRefGoogle Scholar
- 57.Mukherjee, A., Cui, Y., Liu, Y., Dumenyo, C. K., & Chatterjee, A. K. (1996). Global regulation in Erwinia species by Erwinia carotovora rsmA, a homologue of Escherichia coli csrA: Repression of secondary metabolites, pathogenicity and hypersensitive reaction. Microbiology, 142(2), 427–434.PubMedCrossRefGoogle Scholar
- 58.Ng, W. L., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43, 197–222.PubMedPubMedCentralCrossRefGoogle Scholar
- 59.Ng, W. L., Perez, L. J., Wei, Y., Kraml, C., Semmelhack, M. F., & Bassler, B. L. (2011). Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Molecular Microbiology, 79(6), 1407–1417.PubMedPubMedCentralCrossRefGoogle Scholar
- 60.Nickzad, A., & Déziel, E. (2016). Adaptive significance of quorum sensing-dependent regulation of rhamnolipids by integration of growth rate in Burkholderia glumae: A trade-off between survival and efficiency. Frontiers in Microbiology, 7, 1215.PubMedPubMedCentralCrossRefGoogle Scholar
- 61.Nickzad, A., Lépine, F., & Déziel, E. (2015). Quorum sensing controls swarming motility of Burkholderia glumae through regulation of rhamnolipids. PLoS One, 10(6), e0128509.PubMedPubMedCentralCrossRefGoogle Scholar
- 62.Oliveira, B. D. A., Rodrigues, A. C., Bertoldi, M. C., Taylor, J. G., & Pinto, U. M. (2017). Microbial control and quorum sensing inhibition by phenolic compounds of acerola (Malpighia emarginata). International Food Research Journal, 24(5), 2228–2237.Google Scholar
- 63.O’May, C., & Tufenkji, N. (2011). The swarming motility of Pseudomonas aeruginosa is blocked by cranberry proanthocyanidins and other tannin-containing materials. Applied and Environmental Microbiology, 77(9), 3061–3067.PubMedPubMedCentralCrossRefGoogle Scholar
- 64.Overhage, J., Bains, M., Brazas, M. D., & Hancock, R. E. (2008). Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. Journal of Bacteriology, 190(8), 2671–2679.PubMedPubMedCentralCrossRefGoogle Scholar
- 65.Overhage, J., Lewenza, S., Marr, A. K., & Hancock, R. E. (2007). Identification of genes involved in swarming motility using a Pseudomonas aeruginosa PAO1 mini-Tn5-lux mutant library. Journal of Bacteriology, 189(5), 2164–2169.PubMedCrossRefGoogle Scholar
- 66.Patrick, J. E., & Kearns, D. B. (2012). Swarming motility and the control of master regulators of flagellar biosynthesis. Molecular Microbiology, 83(1), 14–23.PubMedCrossRefGoogle Scholar
- 67.Rahman, M. R. T., Lou, Z., Yu, F., Wang, P., & Wang, H. (2017). Anti-quorum sensing and anti-biofilm activity of Amomum tsaoko (Amommum tsao-ko Crevost et Lemarie) on foodborne pathogens. Saudi Journal of Biological Sciences, 24(2), 324–330.PubMedCrossRefGoogle Scholar
- 68.Ramanathan, S., Ravindran, D., Arunachalam, K., & Arumugam, V. R. (2018). Inhibition of quorum sensing-dependent biofilm and virulence genes expression in environmental pathogen Serratia marcescens by petroselinic acid. Antonie Van Leeuwenhoek, 111(4), 501–515.PubMedCrossRefGoogle Scholar
- 69.Rashid, M. H., & Kornberg, A. (2000). Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 97(9), 4885–4890.CrossRefGoogle Scholar
- 70.Sha, J., Rosenzweig, J. A., Kozlova, E. V., Wang, S., Erova, T. E., Kirtley, M. L., …, Chopra, A. K. (2013). Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. Microbiology, 159(6), 1120–1135.PubMedPubMedCentralCrossRefGoogle Scholar
- 71.Sheng, J. Y., Chen, T. T., Tan, X. J., Chen, T., & Jia, A. Q. (2015). The quorum-sensing inhibiting effects of stilbenoids and their potential structure–activity relationship. Bioorganic & Medicinal Chemistry Letters, 25(22), 5217–5220.CrossRefGoogle Scholar
- 72.Shrout, J. D., Chopp, D. L., Just, C. L., Hentzer, M., Givskov, M., & Parsek, M. R. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology, 62(5), 1264–1277.Google Scholar
- 73.Singh, V. K., Mishra, A., & Jha, B. (2017). Anti-quorum sensing and anti-biofilm activity of Delftia tsuruhatensis extract by attenuating the quorum sensing-controlled virulence factor production in Pseudomonas aeruginosa. Frontiers in Cellular and Infection Microbiology, 7, 337.PubMedPubMedCentralCrossRefGoogle Scholar
- 74.Swift, S., Downie, J. A., Whitehead, N. A., Barnard, A. M., Salmond, G. P., & Williams, P. (2001). Quorum sensing as a population-density-dependent determinant of bacterial physiology. Microbiology, 151, 2829–2839.Google Scholar
- 75.Tans-Kersten, J., Huang, H., & Allen, C. (2001). Ralstonia solanacearum needs motility for invasive virulence on tomato. Journal of Bacteriology, 183(12), 3597–3605.PubMedPubMedCentralCrossRefGoogle Scholar
- 76.Tremblay, J., & Déziel, E. (2010). Gene expression in Pseudomonas aeruginosa swarming motility. BMC Genomics, 11(1), 587.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.Tremblay, J., Richardson, A. P., Lépine, F., & Déziel, E. (2007). Self-produced extracellular stimuli modulate the Pseudomonas aeruginosa swarming motility behaviour. Environmental Microbiology, 9(10), 2622–2630.PubMedCrossRefGoogle Scholar
- 78.Vahedi-Shahandashti, R., Kasra-Kermanshahi, R., Shokouhfard, M., Ghadam, P., Feizabadi, M. M., & Teimourian, S. (2017). Antagonistic activities of some probiotic lactobacilli culture supernatant on Serratia marcescens swarming motility and antibiotic resistance. Iranian Journal of Microbiology, 9(6), 348.PubMedPubMedCentralGoogle Scholar
- 79.Van Houdt, R., Givskov, M., & Michiels, C. W. (2007). Quorum sensing in Serratia. FEMS Microbiology Reviews, 31(4), 407–424.PubMedCrossRefGoogle Scholar
- 80.Ventre, I., Goodman, A. L., Vallet-Gely, I., Vasseur, P., Soscia, C., Molin, S., …, Filloux, A. (2006). Multiple sensors control reciprocal expression of Pseudomonas aeruginosa regulatory RNA and virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 103(1), 171–176.CrossRefGoogle Scholar
- 81.Verstraeten, N., Braeken, K., Debkumari, B., Fauvart, M., Fransaer, J., Vermant, J., & Michiels, J. (2008). Living on a surface: Swarming and biofilm formation. Trends in Microbiology, 16(10), 496–506.PubMedCrossRefGoogle Scholar
- 82.Wang, Q., Frye, J. G., McClelland, M., & Harshey, R. M. (2004). Gene expression patterns during swarming in Salmonella typhimurium: Genes specific to surface growth and putative new motility and pathogenicity genes. Molecular Microbiology, 52(1), 169–187.PubMedCrossRefGoogle Scholar
- 83.Wang, S., Yu, S., Zhang, Z., Wei, Q., Yan, L., Ai, G., …, Ma, L. Z. (2014). Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Applied and Environmental Microbiology, 80(21), 6724–6732.PubMedPubMedCentralCrossRefGoogle Scholar
- 84.Wei, B. L., Brun-Zinkernagel, A. M., Simecka, J. W., Prüß, B. M., Babitzke, P., & Romeo, T. (2001). Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Molecular Microbiology, 40(1), 245–256.PubMedCrossRefGoogle Scholar
- 85.Wei, C. F., Tsai, Y. H., Tsai, S. H., Lin, C. S., Chang, C. J., Lu, C. C., …, Lai, H. C. (2017). Cross-talk between bacterial two-component systems drives stepwise regulation of flagellar biosynthesis in swarming development. Biochemical and Biophysical Research Communications, 489(1), 70–75.PubMedCrossRefGoogle Scholar
- 86.Williams, P., & Cámara, M. (2009). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Current Opinion in Microbiology, 12(2), 182–191.PubMedCrossRefGoogle Scholar
- 87.Wuichet, K., & Zhulin, I. B. (2010). Origins and diversification of a complex signal transduction system in prokaryotes. Science Signaling, 3(128), ra50–ra50.PubMedPubMedCentralCrossRefGoogle Scholar
- 88.Xavier, J. B., Kim, W., & Foster, K. R. (2011). A molecular mechanism that stabilizes cooperative secretions in Pseudomonas aeruginosa. Molecular Microbiology, 79(1), 166–179.PubMedCrossRefGoogle Scholar
- 89.Zhang, L., Gao, H., Li, Y., & Lee, J. K. (2016). Interaction of Pseudostellaria heterophylla with quorum sensing and quorum quenching bacteria mediated by root exudates in a consecutive monoculture systems. Journal of Microbiology and Biotechnology, 26(12), 2159–2170.PubMedCrossRefGoogle Scholar
- 90.Zhang, X., Wu, D., Guo, T., Ran, T., Wang, W., & Xu, D. (2018). Differential roles for ArcA and ArcB homologues in swarming motility in Serratia marcescens FS14. Antonie Van Leeuwenhoek, 111(4), 609–617.PubMedCrossRefGoogle Scholar
- 91.Zulianello, L., Canard, C., Köhler, T., Caille, D., Lacroix, J. S., & Meda, P. (2006). Rhamnolipids are virulence factors that promote early infiltration of primary human airway epithelia by Pseudomonas aeruginosa. Infection and Immunity, 74(6), 3134–3147.PubMedPubMedCentralCrossRefGoogle Scholar