Quorum Sensing Systems and Persistence

  • Laura Fernandez-García
  • Lucia Blasco
  • Rocío Trastoy
  • Rodolfo García-Contreras
  • Thomas K. Wood
  • Maria TomásEmail author


In order to control the clonal population’s fitness to manage the expense of the resources by the community, it is not surprising that bacterial communities coordinate the formation of persister cells (bacterial subpopulations that survive stress conditions such as antibiotic or environmental threats). The development of these persister cells is linked to the activity of intercellular signaling molecules. Among them, we focus on acyl-homoserine lactone (AHL), the competence-stimulating peptide (CSP), indole (IND) and autoinducer-2 (AI-2), all involved in the quorum sensing systems activation in several pathogens. In this work, we will describe the action of these molecules related with quorum sensing systems in Gram positive Streptococcus mutans and Staphylococcus aureus and in Gram negative Pseudomonas aeruginosa, Escherichia coli, and Acinetobacter spp. bacteria.


Quorum sensing Persister cells Homoserine-lactones (HSL) Competence-stimulating peptide (CSP) Indole Inhibitors 



We thank the financing by grants PI13/02390 and PI16/01163 awarded to M. Tomás within the State Plan for R+D+I 2013–2016 (National Plan for Scientific Research, Technological Development and Innovation 2008–2011) and co-financed by the ISCIII-Deputy General Directorate of evaluation and Promotion of Research-European Regional Development Fund “A way of Making Europe” and Instituto de Salud Carlos III FEDER. M.Tomás was financially supported by the Miguel Servet Research Programme (SERGAS and ISCIII). L. Fernández-García was financially supported by a predoctoral fellowship from the Xunta de Galicia (GAIN, Axencia de Innovación). Finally, we would to thank to Spanish Network for Research in Infectious Diseases (REIPI), Spain (RD12/0015/0010, RD16/0016/0001 and RD16/0016/0006).


  1. 1.
    Leung, V., & Lévesque, C. M. (2012). A stress-inducible quorum-sensing peptide mediates the formation of persister cells with noninherited multidrug tolerance. Journal of Bacteriology, 194, 2265–2274.CrossRefGoogle Scholar
  2. 2.
    Wood, T. K. (2016). Combatting bacterial persister cells. Biotechnology and Bioengineering, 113, 476–483.CrossRefGoogle Scholar
  3. 3.
    Hobby, G. L., Meyer, K., & Chaffee, E. (1942). Observations on the mechanism of action of penicillin. Experimental Biology and Medicine, 50, 281–285.CrossRefGoogle Scholar
  4. 4.
    Bigger, J. (1994). Treatment of staphylococcal infections with penicillin by intermittent sterilisation. The Lancet, 244, 497–500.CrossRefGoogle Scholar
  5. 5.
    Costerton, J. W., Stewart, P. S., & Greenberg, E. P. (1999). Bacterial biofilms: A common cause of persistent infections. Science, 284, 1318–1322.CrossRefGoogle Scholar
  6. 6.
    Harrison, J. J., Turner, R. J., & Ceri, H. (2005). Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environmental Microbiology, 7, 981–994.CrossRefGoogle Scholar
  7. 7.
    Lewis, K. (2010). Persister cells. Annual Review of Microbiology, 64, 357–372.CrossRefGoogle Scholar
  8. 8.
    Cohen, N. R., Lobritz, M. A., & Collins, J. J. (2013). Microbial persistence and the road to drug resistance. Cell Host & Microbe, 13, 632–642.CrossRefGoogle Scholar
  9. 9.
    Maisonneuve, E., & Gerdes, K. (2014). Molecular mechanisms underlying bacterial persisters. Cell, 157, 539–548.CrossRefGoogle Scholar
  10. 10.
    Harms, A., Maisonneuve, E., Gerdes, K. (2016). Mechanisms of bacterial persistence during stress and antibiotic exposure. Science, 16(354), 6318.Google Scholar
  11. 11.
    Hong, S. H., Wang, X., O’Connor, H. F., Benedik, M. J., & Wood, T. K. (2012). Bacterial persistence increases as environmental fitness decreases. Microbial Biotechnology, 5(4), 509–522.CrossRefGoogle Scholar
  12. 12.
    Moyed, H. S., & Bertrand, K. P. (1983). hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. Journal of Bacteriology, 155, 768–775.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Kim, Y., & Wood, T. K. (2010). Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochemical and Biophysical Research Communications, 391, 209–213.CrossRefGoogle Scholar
  14. 14.
    Luidalepp, H., Jõers, A., Kaldalu, N., & Tenson, T. (2011). Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. Journal of Bacteriology, 193, 3598–3605.CrossRefGoogle Scholar
  15. 15.
    Dörr, T., Vulić, M., & Lewis, K. (2010). Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biology, 8, e1000317.CrossRefGoogle Scholar
  16. 16.
    Harrison, J. J., Wade, W. D., Akierman, S., Vacchi-Suzzi, C., Stremick, C. A., Turner, R. J., & Ceri, H. (2009). The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrobial Agents and Chemotherapy, 53, 2253–2258.CrossRefGoogle Scholar
  17. 17.
    Page, R., & Peti, W. (2016). Toxin-antitoxin systems in bacterial growth arrest and persistence. Nature Chemical Biology, 12, 208–214.CrossRefGoogle Scholar
  18. 18.
    Kim, J.-S., & Wood, T. K. (2016). Persistent persister misperceptions. Frontiers in Microbiology, 7, 2134.PubMedPubMedCentralGoogle Scholar
  19. 19.
    Harms, A., Fino, C., Sørensen, M. A., Semsey, S., & Gerdes, K. (2017). Prophages and growth dynamics confound experimental results with antibiotic-tolerant persister cells. MBio, 8, e01964–e01917.CrossRefGoogle Scholar
  20. 20.
    Fauvart, M., De Groote, V. N., & Michiels, J. (2011). Role of persister cells in chronic infections: Clinical relevance and perspectives on anti-persister therapies. Journal of Medical Microbiology, 60, 699–709.CrossRefGoogle Scholar
  21. 21.
    Chowdhury, N., Kwan, B. W., Wood, T. K. (2016). Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Scientific Reports 6, 20519.Google Scholar
  22. 22.
    Taga, M. E., & Bassler, B. L. (2003). Chemical communication among bacteria. Proceedings of the National Academy of Sciences of the United States of America, 100(Suppl 2), 14549–14554.CrossRefGoogle Scholar
  23. 23.
    Lee, J., Bansal, T., Jayaraman, A., Bentley, W. E., & Wood, T. K. (2007). Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Applied and Environmental Microbiology, 73, 4100–4109.CrossRefGoogle Scholar
  24. 24.
    Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176, 269–275.CrossRefGoogle Scholar
  25. 25.
    Salmond, G. P. C., Bycroft, B. W., Stewart, G. S. A. B., & Williams, P. (1995). The bacterial ‘enigma’: Cracking the code of cell-cell communication. Molecular Microbiology, 16, 615–624.CrossRefGoogle Scholar
  26. 26.
    Li, Y.-H., Tang, N., Aspiras, M. B., Lau, P. C. Y., Lee, J. H., Ellen, R. P., & Cvitkovitch, D. G. (2002). A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. Journal of Bacteriology, 184, 2699–2708.CrossRefGoogle Scholar
  27. 27.
    Perry, J. A., Jones, M. B., Peterson, S. N., Cvitkovitch, D. G., & Lévesque, C. M. (2009). Peptide alarmone signalling triggers an auto-active bacteriocin necessary for genetic competence. Molecular Microbiology, 72, 905–917.CrossRefGoogle Scholar
  28. 28.
    Dufour, D., Cordova, M., Cvitkovitch, D. G., & Lévesque, C. M. (2011). Regulation of the competence pathway as a novel role associated with a streptococcal bacteriocin. Journal of Bacteriology, 193, 6552–6559.CrossRefGoogle Scholar
  29. 29.
    Leung, V., Ajdic, D., Koyanagi, S., & Lévesque, C. M. (2015). The formation of Streptococcus mutans persisters induced by the quorum-sensing peptide pheromone is affected by the LexA regulator. Journal of Bacteriology, 197, 1083–1094.CrossRefGoogle Scholar
  30. 30.
    Leung, V., Dufour, D., & Lévesque, C. M. (2015). Death and survival in Streptococcus mutans: Differing outcomes of a quorum-sensing signaling peptide. Frontiers in Microbiology, 6, 1176.CrossRefGoogle Scholar
  31. 31.
    Lee, J., Zhang, X.-S., Hegde, M., Bentley, W. E., Jayaraman, A., & Wood, T. K. (2008). Indole cell signaling occurs primarily at low temperatures in Escherichia coli. The ISME Journal, 2, 1007–1023.CrossRefGoogle Scholar
  32. 32.
    Shimada, Y., Kinoshita, M., Harada, K., Mizutani, M., Masahata, K., Kayama, H., & Takeda, K. (2013). Commensal bacteria-dependent indole production enhances epithelial barrier function in the colon. PLoS One, 8, e80604.CrossRefGoogle Scholar
  33. 33.
    Bansal, T., Alaniz, R. C., Wood, T. K., & Jayaraman, A. (2010). The bacterial signal indole promotes epithelial cell barrier properties and attenuates inflammation. PNAS, 107, 228–233.CrossRefGoogle Scholar
  34. 34.
    Lee, J., Jayaraman, A., & Wood, T. K. (2007). Indole is an inter-species biofilm signal mediated by SdiA. BMC Microbiology, 7, 42.CrossRefGoogle Scholar
  35. 35.
    Lee, J., Attila, C., Cirillo, S. L., Cirillo, J. D., & Wood, T. K. (2009). Indole and 7-hydoxyindole diminish Pseudomonas aeruginosa virulence. Microbial Biotechnology, 2, 75–90.CrossRefGoogle Scholar
  36. 36.
    Lee, J. H., Wood, T. K., & Lee, J. (2015). Roles of indole as an interspecies and interkingdom signaling molecule. Trends in Microbiology, 23, 707–718.CrossRefGoogle Scholar
  37. 37.
    Vega, N. M., Allison, K. R., Khalil, A. S., & Collins, J. J. (2012). Signaling-mediated bacterial persister formation. Nature Chemical Biology, 8, 431–433.CrossRefGoogle Scholar
  38. 38.
    Hirakawa, H., Inazumi, Y., Masaki, T., Hirata, T., & Yamaguchi, A. (2005). Indole induces the expression of multidrug exporter genes in Escherichia coli. Molecular Microbiology, 55, 1113–1126.CrossRefGoogle Scholar
  39. 39.
    Li, X., Yang, Q., Dierckens, K., Milton, D. L., & Defoirdt, T. (2014). RpoS and indole signaling control the virulence of Vibrio anguillarum towards gnotobiotic sea bass (Dicentrarchus labrax) larvae. PLoS One, 9, e111801.CrossRefGoogle Scholar
  40. 40.
    Chu, W., Zere, T. R., Weber, M. M., Wood, T. K., Whiteley, M., Hidalgo-Romano, B., Valenzuela, E., & McLean, R. J. (2012). Indole production promotes Escherichia coli mixed-culture growth with Pseudomonas aeruginosa by inhibiting quorum signaling. Applied and Environmental Microbiology, 78, 411–419.CrossRefGoogle Scholar
  41. 41.
    Vega, N. M., Allison, K. R., Samuels, A. N., Klempner, M. S., & Collins, J. J. (2013). Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proceedings of the National Academy of Sciences of the United States of America, 110, 14420–14425.CrossRefGoogle Scholar
  42. 42.
    Kim, J., & Park, W. (2013). Indole inhibits bacterial quorum sensing signal transmission by interfering with quorum sensing regulator folding. Microbiology, 159, 2616–2625.CrossRefGoogle Scholar
  43. 43.
    Kim, J., & Park, W. (2015). Indole: A signaling molecule or a mere metabolic byproduct that alters bacterial physiology at a high concentration? Journal of Microbiology, 53, 421–428.CrossRefGoogle Scholar
  44. 44.
    Wang, Y., Li, H., Cui, X., & Zhang, X. H. (2017). A novel stress response mechanism, triggered by indole, involved in quorum quenching enzyme MomL and iron-sulfur cluster in Muricauda olearia Th120. Scientific Reports, 7, 4252.CrossRefGoogle Scholar
  45. 45.
    Chen, X., Schauder, S., Potier, N., Av, D., Pelczer, I., Bassler, B. L., & Hughson, F. M. (2002). Structural identification of a bacterial quorum-sensing signal containing boron. Nature, 415, 545–549.CrossRefGoogle Scholar
  46. 46.
    Camilli, A., & Bassler, B. L. (2006). Bacterial small-molecule signaling pathways. Science, 311, 1113–1116.CrossRefGoogle Scholar
  47. 47.
    Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346.CrossRefGoogle Scholar
  48. 48.
    Schauder, S., Shokat, K., Surette, M. G., & Bassler, B. L. (2001). The LuxS-family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. Molecular Microbiology, 41, 463–476.CrossRefGoogle Scholar
  49. 49.
    Herzberg, M., Kaye, I. K., Peti, W., & Wood, T. K. (2006). YdgG (TqsA) controls biofilm formation in Escherichia coli K-12 by enhancing autoinducer 2 transport. Journal of Bacteriology, 188, 587–598.CrossRefGoogle Scholar
  50. 50.
    González Barrios, A. F., Zuo, R., Hashimoto, Y., Yang, L., Bentley, W. E., & Wood, T. K. (2006). Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology, 188, 305–316.CrossRefGoogle Scholar
  51. 51.
    Kwan, B. W., Osbourne, D. O., Hu, Y., Benedik, M. J., & Wood, T. K. (2015). Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole. Biotechnology and Bioengineering, 112, 588–600.CrossRefGoogle Scholar
  52. 52.
    Hu, Y., Kwan, B. W., Osbourne, D. O., Benedik, M. J., & Wood, T. K. (2015). Toxin YafQ increases persister cell formation by reducing indole signalling. Environmental Microbiology, 17, 1275–1285.CrossRefGoogle Scholar
  53. 53.
    Lee, J. H., Kim, Y. G., Gwon, G., Wood, T. K., & Lee, J. (2016). Halogenated indoles eradicate bacterial persister cells and biofilms. AMB Express, 6, 123.CrossRefGoogle Scholar
  54. 54.
    Ren, D., Sims, J. J., & Wood, T. K. (2001). Inhibition of biofilm formation and swarming of Escherichia coli by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2-(5H)-furanone. Environmental Microbiology, 3, 731–736.CrossRefGoogle Scholar
  55. 55.
    Pan, J., Bahar, A. A., Syed, H., & Ren, D. (2012). Reverting antibiotic tolerance of Pseudomonas aeruginosa PAO1 persister cells by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. PLoS One, 7, e45778.CrossRefGoogle Scholar
  56. 56.
    Pan, J., Song, F., & Ren, D. (2013). Controlling persister cells of Pseudomonas aeruginosa PDO300 by (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one. Bioorganic & Medicinal Chemistry Letters, 23, 4648–4651.CrossRefGoogle Scholar
  57. 57.
    Pan, J., Xie, X., Tian, W., Bahar, A. A., Lin, N., Song, F., An, J., & Ren, D. (2013). (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one sensitizes Escherichia coli persister cells to antibiotics. Applied Microbiology and Biotechnology, 97, 9145–9154.CrossRefGoogle Scholar
  58. 58.
    Möker, N., Dean, C. R., & Tao, J. (2010). Pseudomonas aeruginosa increases formation of multidrug-tolerant persister cells in response to quorum-sensing signaling molecules. Journal of Bacteriology, 192, 1946–1955.CrossRefGoogle Scholar
  59. 59.
    Allegretta, G., Maurer, C. K., Eberhard, J., Maura, D., Hartmann, R. W., Rahme, L., & Empting, M. (2017). In-depth profiling of MvfR-regulated small molecules in Pseudomonas aeruginosa after quorum sensing inhibitor treatment. Frontiers in Microbiology, 8, 924.CrossRefGoogle Scholar
  60. 60.
    Que, Y. A., Hazan, R., Strobel, B., Maura, D., He, J., Kesarwani, M., Panopoulos, P., Tsurumi, A., Giddey, M., Wilhelmy, J., Mindrinos, M. N., & Rahme, L. G. (2013). A quorum sensing small volatile molecule promotes antibiotic tolerance in bacteria. PLoS One, 8, e80140.CrossRefGoogle Scholar
  61. 61.
    Cheng, H.-Y., Soo, V. W. C., Islam, S., McAnulty, M. J., Benedik, M. J., & Wood, T. K. (2014). Toxin GhoT of the GhoT/GhoS toxin/antitoxin system damages the cell membrane to reduce adenosine triphosphate and to reduce growth under stress. Environmental Microbiology, 16, 1741–1754.CrossRefGoogle Scholar
  62. 62.
    Conlon, B. P., Rowe, S. E., Gandt, A. B., Nuxoll, A. S., Donegan, N. P., Zalis, E. A., Clair, G., Adkins, J. N., Cheung, A. L., & Lewis, K. (2016). Persister formation in Staphylococcus aureus is associated with ATP depletion. Nature Microbiology, 1, 16051.CrossRefGoogle Scholar
  63. 63.
    Shan, Y., Brown Gandt, A., Rowe, S. E., Deisinger, J. P., Conlon, B. P., & Lewis, K. (2017). ATP-dependent persister formation in Escherichia coli. MBio, 8, e02267–e02216.CrossRefGoogle Scholar
  64. 64.
    Xu, T., Wang, X.-Y., Cui, P., Zhang, Y.-M., Zhang, W.-H., & Zhang, Y. (2017). The Agr quorum sensing system represses persister formation through regulation of phenol soluble modulins in Staphylococcus aureus. Frontiers in Microbiology, 8, 2189.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Laura Fernandez-García
    • 1
  • Lucia Blasco
    • 1
  • Rocío Trastoy
    • 1
  • Rodolfo García-Contreras
    • 2
  • Thomas K. Wood
    • 3
    • 4
  • Maria Tomás
    • 1
    Email author
  1. 1.Deparment of MicrobiologyComplejo Hospitalario Universitario (CHUAC-INIBIC, A Coruña)La CoruñaSpain
  2. 2.Departamento de Microbiología y Parasitología, Facultad de MedicinaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
  3. 3.Department of Chemical EngineeringPennsylvania State UniversityUniversity ParkUSA
  4. 4.Department of Biochemistry and Molecular BiologyPennsylvania State UniversityUniversity ParkUSA

Personalised recommendations