Advertisement

Quorum Sensing in Streptococcus pyogenes and Their Role in Establishment of Disease

  • Parul Sahu
  • Pallaval Veera Bramhachari
Chapter

Abstract

The social behaviour of bacteria for the fulfilment of different physiological activities is defined as Quorum Sensing (QS). This ranges from conjugation, symbiosis, virulence, antibiotic production, sporulation and biofilm formation. Streptococcus pyogenes which is also named as group A streptococcus (GAS) is a Gram-positive bacteria, is reported to cause diseases strictly in human. The different QS mechanisms in GAS (group A streptococcus) reported till date include Rgg-SHP quorum sensing pathway, SilC (streptococcal invasion locus) quorum-sensing pathway, Lantibiotic regulatory systems, LuxS and AI-2. The proteins of Rgg family are conserved transcription factors, which is modulated by short peptides, thus involve in the biofilm formation and virulence of bacteria. The SilC mechanism involved in the invasive tissue disease and also in the biofilm formation, Lantibiotic regulatory systems aids bacteria in adopting different immune evasion strategies and thus allow them to persist in the harsh hostile environment. Lastly, LuxS and AI-2 are the common mechanisms in all the different bacterial species including streptococcus for the virulence, motility and bio-film formation. The current chapter focuses on the detail mechanism of all the four different pathways along with the role of Quorum Sensing for the establishment of disease in the host, the immune evasion strategies of bacteria using Quorum sensing (QS) and future clinical perspective with possible applications. This may help to increase our vision towards putative vaccine targets by exploiting the mechanisms involved in Quorum Sensing.

Keywords

Quorum sensing Streptococcus pyogenes (GAS) Virulence Immune evasion 

References

  1. 1.
    Brouwer, S., Barnett, T. C., Rivera-hernandez, T., Rohde, M., & Walker, M. J. (2016). Streptococcus pyogenes adhesion and colonization. FEBS Letters, 590, 3739–3757.  https://doi.org/10.1002/1873-3468.12254.CrossRefPubMedGoogle Scholar
  2. 2.
    Cunningham, M. W. (2000). Pathogenesis of group A streptococcal infections. Clinical Microbiology Reviews, 13(3), 470–511.CrossRefGoogle Scholar
  3. 3.
    Martin, W. J., Steer, A. C., Smeesters, P. R., et al. (2015). Post-infectious group A streptococcal autoimmune syndromes and the heart. Autoimmunity Reviews, 14(8), 710–725.  https://doi.org/10.1016/j.autrev.2015.04.005.CrossRefPubMedGoogle Scholar
  4. 4.
    Carapetis, J. R., Steer, A. C., Mulholland, E. K., & Weber, M. (2005, November). The global burden of group A streptococcal diseases. The Lancet Infectious Diseases, 5, 685–694.CrossRefGoogle Scholar
  5. 5.
    Sika-Paotonu, D., Beaton, A., Raghu, A., et al. (2017). Acute rheumatic fever and rheumatic heart disease. In J. J. Ferretti, D. L. Stevens, & V. A. Fischetti (Eds.), Streptococcus pyogenes: Basic biology to clinical manifestations. https://www.ncbi.nlm.nih.gov/books/NBK425394/.
  6. 6.
    Šmitran, A., Vuković, D., Gajić, I., Marinković, J., Ranin, L. (2015, August). Effects of penicillin and erythromycin on adherence of invasive and noninvasive isolates of Streptococcus pyogenes to laminin. Memórias do Instituto Oswaldo Cruz, 110, 684–686.  https://doi.org/10.1590/0074-02760150092.CrossRefGoogle Scholar
  7. 7.
    Bowen, A. C., Tong, S. Y., Chatfield, M. D., & Carapetis, J. R. (2014). The microbiology of impetigo in indigenous children: Associations between Streptococcus pyogenes, Staphylococcus aureus, scabies, and nasal carriage. BMC Infectious Diseases, 14(1), 727.Google Scholar
  8. 8.
    Perea-mejı, L. M., Inzunza-montiel, A. E., & Cravioto, A. (2002). Molecular characterization of group A streptococcus strains isolated during a scarlet fever outbreak. Journal of Clinical Microbiology, 40(1), 278–280.  https://doi.org/10.1128/JCM.40.1.278.CrossRefGoogle Scholar
  9. 9.
    Shea, P. R., Ewbank, A. L., Gonzalez-Lugo, J. H., Martagon-Rosado, A. J., Martinez-Gutierrez, J. C., Rehman, H. A., et al. (2011). Group a Streptococcus emm gene types in pharyngeal isolates, Ontario, Canada, 2002–2010. Emerging Infectious Diseases, 17(11), 2010.Google Scholar
  10. 10.
    Fam, A. (2009). Diagnosis and treatment of streptococcal pharyngitis. 383–390.Google Scholar
  11. 11.
    Bright, P. D., Mayosi, B. M., & Martin, W. J. (2016.;(table 1)). An immunological perspective on rheumatic heart disease pathogenesis: More questions than answers. Heart, 1527–1532.  https://doi.org/10.1136/heartjnl-2015-309188.CrossRefGoogle Scholar
  12. 12.
    Raynes, J. M., Frost, H. R., Williamson, D. A., Young, P. G., Baker, E. N., Steemson, J. D., et al. (2016). Serological evidence of immune priming by group a streptococci in patients with acute rheumatic fever. Frontiers in Microbiology, 7, 1119.Google Scholar
  13. 13.
    Maurice, J. (2013). Rheumatic heart disease back in the limelight rheumatic heart disease is drawing renewed attention from the health community and from. Lancet, 382(9898), 1085–1086.  https://doi.org/10.1016/S0140-6736(13)61972-8.CrossRefPubMedGoogle Scholar
  14. 14.
    Kalil, J. (2006, March). Molecular mimicry in autoimmune pathogenesis of rheumatic heart disease. Autoimmunity.  https://doi.org/10.1080/08916930500484674.CrossRefGoogle Scholar
  15. 15.
    Tandon, R. (2012). Rheumatic fever pathogenesis: Approach in research needs change. Annals of Pediatric Cardiology.  https://doi.org/10.4103/0974-2069.99621.CrossRefGoogle Scholar
  16. 16.
    Cunningham, M. W. (2012). Streptococcus and rheumatic fever. Current Opinion in Rheumatology, 24(4), 408–416.  https://doi.org/10.1097/BOR.0b013e32835461d3.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Beaton, A., & Carapetis, J. (2015). The 2015 revision of the Jones criteria for the diagnosis of acute rheumatic fever: Implications for practice in low-income and middle-income countries. Heart Asia, 7, 7–11.  https://doi.org/10.1136/heartasia-2015-010648.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Jackson, S. J., Steer, A. C., & Campbell, H. (2011). Systematic review: Estimation of global burden of non- suppurative sequelae of upper respiratory tract infection: Rheumatic fever and post-streptococcal glomerulonephritis. Tropical Medicine & International Health, 16(1), 2–11.  https://doi.org/10.1111/j.1365-3156.2010.02670.x.CrossRefGoogle Scholar
  19. 19.
    Speers, D. J., Levy, A., Gichamo, A., Eastwood, A., & Leung, M. J. (2017). M protein gene (emm type) analysis of group a Streptococcus isolates recovered during an acute glomerulonephritis outbreak in northern western Australia. Pathology, 49(7), 765–769.CrossRefGoogle Scholar
  20. 20.
    Sriskandan, S., & Altmann, D. M. (2008). The immunology of sepsis. The Journal of Pathology, 214, 211–223.  https://doi.org/10.1002/path.CrossRefPubMedGoogle Scholar
  21. 21.
    Zakour, N. L. B., Venturini, C., Beatson, S. A., & Walker, M. J. (2012). Analysis of a streptococcus pyogenes puerperal sepsis cluster by use of whole-genome sequencing. Journal of Clinical Microbiology, 50(7), 2224–2228.  https://doi.org/10.1128/JCM.00675-12.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Martin, J.M., Green, M. (2006). Group A streptococcus. 140–148.  https://doi.org/10.1053/j.spid.2006.07.001.CrossRefGoogle Scholar
  23. 23.
    Low, D. E. (2013). Toxic Shock syndrome major advances in pathogenesis, but not treatment. Critical Care Clinics, 29(3), 651–675.  https://doi.org/10.1016/j.ccc.2013.03.012.CrossRefPubMedGoogle Scholar
  24. 24.
    Vähäkuopus, S., Vuento, R., Siljander, T., & Syrjänen, J. (2012). Distribution of emm types in invasive and non-invasive group A and G streptococci. European Journal of Clinical Microbiology, 1251–1256.  https://doi.org/10.1007/s10096-011-1436-2.CrossRefGoogle Scholar
  25. 25.
    Whatmore, A. M., & Kumar, M. P. (2018). EMM types of streptococcus pyogenes in Chennai. Indian Journal of Medical Microbiology, 19(3), 161–163.Google Scholar
  26. 26.
    Rudolph, K., Bruce, M. G., Bruden, D., et al. (2016). Epidemiology of invasive group A streptococcal disease in Alaska, 2001 to 2013. Journal of Clinical Microbiology, 54(1), 134–141.  https://doi.org/10.1128/JCM.02122-15 Editor.CrossRefPubMedGoogle Scholar
  27. 27.
    Cole, J. N., Barnett, T. C., Nizet, V., & Walker, M. J. (2011). Molecular insight into invasive group A streptococcal disease. Nature Publishing Group, 9(10), 724–736.  https://doi.org/10.1038/nrmicro2648.CrossRefGoogle Scholar
  28. 28.
    Bentley, C.C., Shakhnovic, E.A., Wessels, M.R. (2005). Cytolysin-dependent evasion of lysosomal killing.Google Scholar
  29. 29.
    Timmer, A. M., Timmer, J. C., Pence, M. A., et al. (2009). Streptolysin O promotes group A streptococcus immune evasion by accelerated macrophage apoptosis*. Journal of Biological Chemistry, 284(2), 862–871.  https://doi.org/10.1074/jbc.M804632200.CrossRefPubMedGoogle Scholar
  30. 30.
    Fiedler, T., Köller, T., & Kreikemeyer, B. (2015). Streptococcus pyogenes biofilms—Formation, biology, and clinical relevance. Frontiers in Cellular and Infection Microbiology, 5, 15.Google Scholar
  31. 31.
    Marks, L. R., Mashburn-Warren, L., Federle, M. J., & Hakansson, A. P. (2014). Streptococcus pyogenes biofilm growth in vitro and in vivo and its role in colonization, virulence, and genetic exchange. The Journal of Infectious Diseases, 210(1), 25–34.CrossRefGoogle Scholar
  32. 32.
    Young, C., Holder, R.C., Dubois, L., Sean, D. (2016). Streptococcus pyogenes biofilm introduction to biofilms. 1–34.Google Scholar
  33. 33.
    Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55, 165–199.CrossRefGoogle Scholar
  34. 34.
    Chang, J. C., LaSarre, B., Jimenez, J. C., Aggarwal, C., & Federle, M. J. (2011). Two group a streptococcal peptide pheromones act through opposing rgg regulators to control biofilm development. PLoS Pathogens, 7(8), e1002190.  https://doi.org/10.1371/journal.ppat.1002190.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Makthal, N., Gavagan, M., Do, H., Olsen, R. J., Musser, J. M., & Kumaraswami, M. (2016). Structural and functional analysis of RopB: A major virulence regulator in Streptococcus pyogenes. Molecular Microbiology, 99(6), 1119–1133.  https://doi.org/10.1111/mmi.13294.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Chang, J. C., & Federle, M. J. (2016). PptAB exports Rgg quorum-sensing peptides in streptococcus. PLoS One, 11(12), 1–12.  https://doi.org/10.1371/journal.pone.0168461.CrossRefGoogle Scholar
  37. 37.
    Aggarwal, C., Jimenez, J. C., Nanavati, D., & Federle, M. J. (2014). Multiple length peptide-pheromone variants produced by streptococcus pyogenes directly bind Rgg proteins to confer transcriptional regulation. The Journal of Biological Chemistry, 289(32), 22427–22436.  https://doi.org/10.1074/jbc.M114.583989.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Mashburn-Warren, L., Morrison, D. A., & Federle, M. J. (2012). The cryptic competence pathway in streptococcus pyogenes is controlled by a peptide pheromone. Journal of Bacteriology, 194(17), 4589–4600.  https://doi.org/10.1128/JB.00830-12.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hidalgo-grass, C., Ravins, M., Dan-goor, M., Jaffe, J., Moses, A. E., & Hanski, E. (2002). A locus of group A streptococcus involved in invasive disease and DNA transfer. Molecular Microbiology, 46, 87–99.CrossRefGoogle Scholar
  40. 40.
    Belotserkovsky, L., Baruch, M., Peer, A., et al. (2009). Functional analysis of the quorum-sensing streptococcal invasion locus (sil). PLoS Pathogens, 5(11), e1000651.  https://doi.org/10.1371/journal.ppat.1000651.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Dischinger, J., Wiedemann, I., Bierbaum, G. (n.d.). H-GS. Handbook of biologically active peptides (2nd Edition). https://www.sciencedirect.com/science/article/pii/B9780123850959000191.
  42. 42.
    Armstrong, B. D., Herfst, C. A., Tonial, N. C., Wakabayashi, A. T., Zeppa, J. J., & McCormick, J. K. (2016). Identification of a two-component class IIb bacteriocin in Streptococcus pyogenes by recombinase-based in vivo expression technology. Scientific Reports, 6, 36233.Google Scholar
  43. 43.
    Phelps, H. A., & Neely, M. N. (2007). SalY of the streptococcus pyogenes lantibiotic locus is required for full virulence and intracellular survival in macrophages. Infection and Immunity, 75(9), 4541–4551.  https://doi.org/10.1128/IAI.00518-07.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kleerebezem, M. (2004). Quorum sensing control of lantibiotic production; nisin and subtilin autoregulate their own biosynthesis. 25.  https://doi.org/10.1016/j.peptides.2003.10.021.CrossRefGoogle Scholar
  45. 45.
    Kawada-matsuo, M., Tatsuno, I., Arii, K., et al. (2016). Two-component systems involved in susceptibility to nisin A in streptococcus pyogenes. Applied and Environmental Microbiology, 82(19), 5930–5939.  https://doi.org/10.1128/AEM.01897-16.Editor.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wescombe, P. A., & Tagg, J. R. (2003). Purification and characterization of streptin, a type A1 lantibiotic produced by streptococcus pyogenes. Applied and Environmental Microbiology, 69(5), 2737–2747.  https://doi.org/10.1128/AEM.69.5.2737.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Schauder, S. Shokat, K. Surette, M. G. Bassler, B. L. (2001). The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule.  https://doi.org/10.1046/j.1365-2958.2001.02532.x.CrossRefGoogle Scholar
  48. 48.
    Marouni, M. J., & Sela, S. (2003). The luxS gene of streptococcus pyogenes regulates expression of genes that affect internalization by epithelial cells. Infection and Immunity, 71(10), 5633–5639.  https://doi.org/10.1128/IAI.71.10.5633.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Basavaraju, M., Sisnity, V. S., & Palaparthy, R. (2016). ScienceDirect Quorum quenching: Signal jamming in dental plaque biofilms. Journal of Dental Sciences, 11(4), 349–352.  https://doi.org/10.1016/j.jds.2016.02.002.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Parul Sahu
    • 1
  • Pallaval Veera Bramhachari
    • 2
  1. 1.Product Development Cell-1National Institute of ImmunologyNew DelhiIndia
  2. 2.Department of BiotechnologyKrishna UniversityMachilipatnamIndia

Personalised recommendations