Advertisement

Quorum Sensing Mechanisms in Gram Positive Bacteria

  • Veer S. BhattEmail author
Chapter

Abstract

Quorum sensing (QS) is a form of intercellular communication that enables bacteria to coordinate gene expression in a density-dependent fashion. Bacterial signaling molecules called autoinducers are central to this process. When released into the surrounding environment they bind to signaling receptors on the surface of neighboring bacteria, and upon reaching a threshold level activate quorum sensing genes. Gram-positive bacteria employ small post-translationally modified peptides called autoinducing peptides (AIPs) as signaling molecules. AIPs are often integral elements of a histidine kinase two-component signal transduction system. In certain cases the secreted AIPs may be imported back into the cell after release. They are then identified by cytoplasmic transcription factors. In this system, extracellular proteases process the secreted precursor-AIP into mature AIP. Upon return to the cell, the mature AIPs bind to, and alter the activity of the corresponding transcription factors. Some examples of such transport are know to be critical in sporulation, competence, and enzyme production in Bacillus subtilis. A large gamut of peptides is secreted from bacteria by de novo biosynthesis and proteolytic degradation. These peptides include pheromones that modulate expression of specific genes of Gram positive bacteria to regulate biosynthesis of quorum dependent proteins such as virulence factors in addition to serving critical roles in a myriad of bacterial life processes such as regulation of the bacterial competence, bacterial conjugation and bacterial virulence. Interestingly, bacterial cells can respond to the AIPs secreted by itself as well. The physiological effects of this ‘self-sensing’ have been studied rather recently in Bacillus subtilis.

Keywords

Gram positive bacteria Quorum sensing Autoinducing peptides Self-sensing Bacterial virulence 

References

  1. 1.
    Atkinson, S., & Williams, P. (2009). Quorum sensing and social networking in the microbial world. Journal of the Royal Society Interface, 6(40), 959–978.  https://doi.org/10.1098/rsif.2009.0203.CrossRefPubMedCentralGoogle Scholar
  2. 2.
    Baker, M. D., & Neiditch, M. B. (2011). Structural basis of response regulator inhibition by a bacterial anti-activator protein. PLoS Biology, 9(12), e1001226.  https://doi.org/10.1371/journal.pbio.1001226.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Balamurugan, P., Praveen Krishna, V., Bharath, D., Lavanya, R., Vairaprakash, P., & Adline Princy, S. (2017). Staphylococcus aureus quorum regulator SarA targeted compound, 2-[(Methylamino)methyl]phenol inhibits biofilm and down-regulates virulence genes. Frontiers in Microbiology, 8, 1231–1210.  https://doi.org/10.3389/fmicb.2017.01290.CrossRefGoogle Scholar
  4. 4.
    Bareia, T., Pollak, S., & Eldar, A. (2018). Self-sensing in Bacillus subtilis quorum-sensing systems. Nature Microbiology, 3(1), 83–89.  https://doi.org/10.1038/s41564-017-0044-z.CrossRefPubMedGoogle Scholar
  5. 5.
    Bassler, B. L., Greenberg, E. P., & Stevens, A. M. (1997). Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. Journal of Bacteriology, 179(12), 4043–4045.CrossRefGoogle Scholar
  6. 6.
    Bassler, B. L., Wright, M., & Silverman, M. R. (1994). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: Sequence and function of genes encoding a second sensory pathway. Molecular Microbiology, 13(2), 273–286.  https://doi.org/10.1111/j.1365-2958.1994.tb00422.x.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Bischofs, I. B., Hug, J. A., Liu, A. W., Wolf, D. M., & Arkin, A. P. (2009). Complexity in bacterial cell-cell communication: Quorum signal integration and subpopulation signaling in the Bacillus subtilis phosphorelay. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6459–6464.  https://doi.org/10.1073/pnas.0810878106.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Biswa, P., & Doble, M. (2013). Production of acylated homoserine lactone by gram-positive bacteria isolated from marine water. FEMS Microbiology Letters, 343(1), 34–41.  https://doi.org/10.1111/1574-6968.12123.CrossRefPubMedGoogle Scholar
  9. 9.
    Bouillaut, L., Perchat, S., Arold, S., Zorrilla, S., Slamti, L., Henry, C., et al. (2008). Molecular basis for group-specific activation of the virulence regulator PlcR by PapR heptapeptides. Nucleic Acids Research, 36(11), 3791–3801.  https://doi.org/10.1093/nar/gkn149.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brunel, A.-S., & Guery, B. (2017). Multidrug resistant (or antimicrobial-resistant) pathogens – Alternatives to new antibiotics? Swiss Medical Weekly, 147(4748), w14553.  https://doi.org/10.4414/smw.2017.14553.CrossRefPubMedGoogle Scholar
  11. 11.
    Chang, J. C., LaSarre, B., Jimenez, J. C., Aggarwal, C., & Federle, M. J. (2011). Two group a streptococcal peptide pheromones act through opposing Rgg regulators to control biofilm development. PLoS Pathogens, 7(8), e1002190.  https://doi.org/10.1371/journal.ppat.1002190.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chu, Y.-Y., Nega, M., Wölfle, M., Plener, L., Grond, S., Jung, K., & Götz, F. (2013). A new class of quorum quenching molecules from Staphylococcus species affects communication and growth of gram-negative bacteria. PLoS Pathogens, 9(9), e1003654–e1003613.  https://doi.org/10.1371/journal.ppat.1003654.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Cook, L. C., & Federle, M. J. (2014). Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiology Reviews, 38(3), 473–492.  https://doi.org/10.1111/1574-6976.12046.CrossRefPubMedGoogle Scholar
  14. 14.
    Czajkowski, R., & Jafra, S. (2009). Quenching of acyl-homoserine lactone-dependent quorum sensing by enzymatic disruption of signal molecules. Acta Biochimica Polonica, 56(1), 1–16.PubMedGoogle Scholar
  15. 15.
    D’Andrea, L. D., & Regan, L. (2003). TPR proteins: The versatile helix. Trends in Biochemical Sciences, 28(12), 655–662.  https://doi.org/10.1016/j.tibs.2003.10.007.CrossRefPubMedGoogle Scholar
  16. 16.
    Declerck, N., Bouillaut, L., Chaix, D., Rugani, N., Slamti, L., Hoh, F., et al. (2007). Structure of PlcR: Insights into virulence regulation and evolution of quorum sensing in Gram-positive bacteria. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18490–18495.  https://doi.org/10.1073/pnas.0704501104.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Diaz, A. R., Core, L. J., Jiang, M., Morelli, M., Chiang, C. H., Szurmant, H., & Perego, M. (2012). Bacillus subtilis RapA phosphatase domain interaction with its substrate, phosphorylated Spo0F, and its inhibitor, the PhrA peptide. Journal of Bacteriology, 194(6), 1378–1388.  https://doi.org/10.1128/JB.06747-11.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dogsa, I., Choudhary, K. S., Marsetic, Z., Hudaiberdiev, S., Vera, R., Pongor, S., & Mandic-Mulec, I. (2014). ComQXPA quorum sensing systems may not be unique to Bacillus subtilis: A census in prokaryotic genomes. PLoS One, 9(5), e96122–e96128.  https://doi.org/10.1371/journal.pone.0096122.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fleuchot, B., Gitton, C., Guillot, A., Vidic, J., Nicolas, P., Besset, C., et al. (2011). Rgg proteins associated with internalized small hydrophobic peptides: A new quorum-sensing mechanism in streptococci. Molecular Microbiology, 80(4), 1102–1119.  https://doi.org/10.1111/j.1365-2958.2011.07633.x.CrossRefPubMedGoogle Scholar
  20. 20.
    Fontaine, L., Boutry, C., de Frahan, M. H., Delplace, B., Fremaux, C., Horvath, P., et al. (2010). A novel pheromone quorum-sensing system controls the development of natural competence in Streptococcus thermophilus and Streptococcus salivarius. Journal of Bacteriology, 192(5), 1444–1454.  https://doi.org/10.1128/JB.01251-09.CrossRefPubMedGoogle Scholar
  21. 21.
    Frenzel, E., Doll, V., Pauthner, M., Lücking, G., Scherer, S., & Ehling-Schulz, M. (2012). CodY orchestrates the expression of virulence determinants in emetic Bacillus cereus by impacting key regulatory circuits. Molecular Microbiology, 85(1), 67–88.  https://doi.org/10.1111/j.1365-2958.2012.08090.x.CrossRefPubMedGoogle Scholar
  22. 22.
    Gallego del Sol, F., & Marina, A. (2013). Structural basis of Rap phosphatase inhibition by Phr peptides. PLoS Biology, 11(3), e1001511.  https://doi.org/10.1371/journal.pbio.1001511.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Gardan, R., Besset, C., Guillot, A., Gitton, C., & Monnet, V. (2009). The oligopeptide transport system is essential for the development of natural competence in Streptococcus thermophilus strain LMD-9. Journal of Bacteriology, 191(14), 4647–4655.  https://doi.org/10.1128/JB.00257-09.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Globisch, D., Lowery, C. A., McCague, K. C., & Janda, K. D. (2012). Uncharacterized 4,5-dihydroxy-2,3-pentanedione (DPD) molecules revealed through NMR spectroscopy: Implications for a greater signaling diversity in bacterial species. Angewandte Chemie (International Ed. in English), 51(17), 4204–4208.  https://doi.org/10.1002/anie.201109149.CrossRefGoogle Scholar
  25. 25.
    Gohar, M., Faegri, K., Perchat, S., Ravnum, S., Økstad, O. A., Gominet, M., et al. (2008). The PlcR virulence regulon of Bacillus cereus. PLoS ONE, 3(7), e2793.  https://doi.org/10.1371/journal.pone.0002793.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gominet, M., Slamti, L., Gilois, N., Rose, M., & Lereclus, D. (2001). Oligopeptide permease is required for expression of the Bacillus thuringiensis plcR regulon and for virulence. Molecular Microbiology, 40(4), 963–975.CrossRefGoogle Scholar
  27. 27.
    González Barrios, A. F., Zuo, R., Hashimoto, Y., Yang, L., Bentley, W. E., & Wood, T. K. (2006). Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology, 188(1), 305–316.  https://doi.org/10.1128/JB.188.1.305-316.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Gray, B., Hall, P., & Gresham, H. (2013). Targeting agr- and agr-like quorum sensing systems for development of common therapeutics to treat multiple gram-positive bacterial infections. Sensors, 13(12), 5130–5166.  https://doi.org/10.3390/s130405130.CrossRefPubMedGoogle Scholar
  29. 29.
    Grenha, R., Slamti, L., Nicaise, M., Refes, Y., Lereclus, D., & Nessler, S. (2013). Structural basis for the activation mechanism of the PlcR virulence regulator by the quorum-sensing signal peptide PapR. Proceedings of the National Academy of Sciences of the United States of America, 110(3), 1047–1052.  https://doi.org/10.1073/pnas.1213770110.CrossRefPubMedGoogle Scholar
  30. 30.
    Ha, J.-H., Eo, Y., Grishaev, A., Guo, M., Smith, J. A. I., Sintim, H. O., et al. (2013). Crystal structures of the LsrR proteins complexed with phospho-AI-2 and two signal-interrupting analogues reveal distinct mechanisms for ligand recognition. Journal of the American Chemical Society, 135(41), 15526–15535.  https://doi.org/10.1021/ja407068v.CrossRefPubMedGoogle Scholar
  31. 31.
    Han, Y., Chen, F., Li, N., Zhu, B., & Li, X. (2010). Bacillus marcorestinctum sp. nov., a novel soil acylhomoserine lactone quorum-sensing signal quenching bacterium. International Journal of Molecular Sciences, 11(2), 507–520.  https://doi.org/10.3390/ijms11020507.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Håvarstein, L. S., Coomaraswamy, G., & Morrison, D. A. (1995). An unmodified heptadecapeptide pheromone induces competence for genetic transformation in Streptococcus pneumoniae. Proceedings of the National Academy of Sciences of the United States of America, 92(24), 11140–11144.CrossRefGoogle Scholar
  33. 33.
    Hoover, S. E., Perez, A. J., Tsui, H.-C. T., Sinha, D., Smiley, D. L., DiMarchi, R. D., et al. (2015). A new quorum-sensing system (TprA/PhrA) for Streptococcus pneumoniae D39 that regulates a lantibiotic biosynthesis gene cluster. Molecular Microbiology, 97(2), 229–243.  https://doi.org/10.1111/mmi.13029.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Jones, M. B., Peterson, S. N., Benn, R., Braisted, J. C., Jarrahi, B., Shatzkes, K., et al. (2014). Role of luxSin Bacillus anthracis growth and virulence factor expression. Virulence, 1(2), 72–83.  https://doi.org/10.4161/viru.1.2.10752.CrossRefGoogle Scholar
  35. 35.
    Kaur, G., Rajesh, S., & Princy, S. A. (2015). Plausible drug targets in the Streptococcus mutans quorum sensing pathways to combat dental biofilms and associated risks. Indian Journal of Microbiology, 55(4), 349–356.  https://doi.org/10.1007/s12088-015-0534-8.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Koetje, E. J. (2003). A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology, 149(1), 19–28.  https://doi.org/10.1099/mic.0.25737-0.CrossRefPubMedGoogle Scholar
  37. 37.
    Koetje, E. J., Hajdo-Milasinovic, A., Kiewiet, R., Bron, S., & Tjalsma, H. (2003). A plasmid-borne Rap-Phr system of Bacillus subtilis can mediate cell-density controlled production of extracellular proteases. Microbiology (Reading, England), 149(Pt 1), 19–28.  https://doi.org/10.1099/mic.0.25737-0.CrossRefGoogle Scholar
  38. 38.
    Kozlowicz, B. K., Shi, K., Gu, Z.-Y., Ohlendorf, D. H., Earhart, C. A., & Dunny, G. M. (2006). Molecular basis for control of conjugation by bacterial pheromone and inhibitor peptides. Molecular Microbiology, 62(4), 958–969.  https://doi.org/10.1111/j.1365-2958.2006.05434.x.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Kuipers, O. P., Beerthuyzen, M. M., de Ruyter, P. G., Luesink, E. J., & de Vos, W. M. (1995). Autoregulation of nisin biosynthesis in Lactococcus lactis by signal transduction. Journal of Biological Chemistry, 270(45), 27299–27304.CrossRefGoogle Scholar
  40. 40.
    Kumar, S., Kolodkin-Gal, I., & Engelberg-Kulka, H. (2013). Novel quorum-sensing peptides mediating interspecies bacterial cell death. mBio, 4(3), e00314–e00313.  https://doi.org/10.1128/mBio.00314-13.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    LaSarre, B., Aggarwal, C., & Federle, M. J. (2012). Antagonistic Rgg regulators mediate quorum sensing via competitive DNA binding in Streptococcus pyogenes. mBio, 3(6), e00333–e00312.  https://doi.org/10.1128/mBio.00333-12.CrossRefPubMedCentralGoogle Scholar
  42. 42.
    LaSarre, B., Chang, J. C., & Federle, M. J. (2013). Redundant group A streptococcus signaling peptides exhibit unique activation potentials. Journal of Bacteriology, 195(18), 4310–4318.  https://doi.org/10.1128/JB.00684-13.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lazazzera, B. A., Solomon, J. M., & Grossman, A. D. (1997). An exported peptide functions intracellularly to contribute to cell density signaling in B-subtilis. Cell, 89(6), 917–925.  https://doi.org/10.1016/S0092-8674(00)80277-9.CrossRefPubMedGoogle Scholar
  44. 44.
    Lowery, C. A., Park, J., Gloeckner, C., Meijler, M. M., Mueller, R. S., Boshoff, H. I., et al. (2009). Defining the mode of action of tetramic acid antibacterials derived from Pseudomonas aeruginosa quorum sensing signals. Journal of the American Chemical Society, 131(40), 14473–14479.  https://doi.org/10.1021/ja9056079.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lucking, G., Dommel, M. K., Scherer, S., Fouet, A., & Ehling-Schulz, M. (2009). Cereulide synthesis in emetic Bacillus cereus is controlled by the transition state regulator AbrB, but not by the virulence regulator PlcR. Microbiology (Reading, England), 155(3), 922–931.  https://doi.org/10.1099/mic.0.024125-0.CrossRefGoogle Scholar
  46. 46.
    Manifold-Wheeler, B. C., Elmore, B. O., Triplett, K. D., Castleman, M. J., Otto, M., & Hall, P. R. (2016). Serum lipoproteins are critical for pulmonary innate defense against Staphylococcus aureus quorum sensing. Journal of Immunology (Baltimore, Md.: 1950), 196(1), 328–335.  https://doi.org/10.4049/jimmunol.1501835.CrossRefGoogle Scholar
  47. 47.
    Martins, M., McCusker, M. P., Viveiros, M., Couto, I., Fanning, S., Pagès, J.-M., & Amaral, L. (2013). A simple method for assessment of MDR bacteria for over-expressed efflux pumps. The Open Microbiology Journal, 7(1), 72–82.  https://doi.org/10.2174/1874285801307010072.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., et al. (1997). Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology (Reading, England), 143(Pt 12), 3703–3711.  https://doi.org/10.1099/00221287-143-12-3703.CrossRefGoogle Scholar
  49. 49.
    McQuade, R. S., Comella, N., & Grossman, A. D. (2001). Control of a family of phosphatase regulatory genes (phr) by the alternate sigma factor sigma-H of Bacillus subtilis. Journal of Bacteriology, 183(16), 4905–4909.  https://doi.org/10.1128/JB.183.16.4905-4909.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Review of Microbiology, 55(1), 165–199.  https://doi.org/10.1146/annurev.micro.55.1.165.CrossRefGoogle Scholar
  51. 51.
    Monnet, V., & Gardan, R. (2015). Quorum-sensing regulators in gram-positive bacteria: ‘Cherchez le peptide ’. Molecular Microbiology, 97(2), 181–184.  https://doi.org/10.1111/mmi.13060.CrossRefPubMedGoogle Scholar
  52. 52.
    Nakayama, J., Uemura, Y., Nishiguchi, K., Yoshimura, N., Igarashi, Y., & Sonomoto, K. (2009). Ambuic acid inhibits the biosynthesis of cyclic peptide quormones in gram-positive bacteria. Antimicrobial Agents and Chemotherapy, 53(2), 580–586.  https://doi.org/10.1128/AAC.00995-08.CrossRefPubMedGoogle Scholar
  53. 53.
    Nealson, K. H., Platt, T., & Hastings, J. W. (1970). Cellular control of the synthesis and activity of the bacterial luminescent system. Journal of Bacteriology, 104(1), 313–322.PubMedPubMedCentralGoogle Scholar
  54. 54.
    Neiditch, M. B., Capodagli, G. C., Prehna, G., & Federle, M. J. (2017). Genetic and structural analyses of RRNPP intercellular peptide signaling of gram-positive bacteria. Annual Review of Genetics, 51(1), 311–333.  https://doi.org/10.1146/annurev-genet-120116-023507.CrossRefPubMedGoogle Scholar
  55. 55.
    Ohtani, K., Yuan, Y., Hassan, S., Wang, R., Wang, Y., & Shimizu, T. (2009). Virulence gene regulation by the agr system in Clostridium perfringens. Journal of Bacteriology, 191(12), 3919–3927.  https://doi.org/10.1128/JB.01455-08.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Olivero-Verbel, J., Barreto-Maya, A., Bertel-Sevilla, A., & Stashenko, E. E. (2014). Composition, anti-quorum sensing and antimicrobial activity of essential oils from Lippia alba. Brazilian Journal of Microbiology: [Publication of the Brazilian Society for Microbiology], 45(3), 759–767.CrossRefGoogle Scholar
  57. 57.
    Parashar, V., Jeffrey, P. D., & Neiditch, M. B. (2013). Conformational change-induced repeat domain expansion regulates Rap phosphatase quorum-sensing signal receptors. PLoS Biology, 11(3), e1001512–e1001515.  https://doi.org/10.1371/journal.pbio.1001512.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Parashar, V., Mirouze, N., Dubnau, D. A., & Neiditch, M. B. (2011). Structural basis of response regulator dephosphorylation by Rap phosphatases. PLoS Biology, 9(2), e1000589.  https://doi.org/10.1371/journal.pbio.1000589.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Perchat, S., Dubois, T., Zouhir, S., Gominet, M., Poncet, S., Lemy, C., et al. (2011). A cell-cell communication system regulates protease production during sporulation in bacteria of the Bacillus cereus group. Molecular Microbiology, 82(3), 619–633.  https://doi.org/10.1111/j.1365-2958.2011.07839.x.CrossRefPubMedGoogle Scholar
  60. 60.
    Perego, M. (2013). Forty years in the making: Understanding the molecular mechanism of peptide regulation in bacterial development. PLoS Biology, 11(3), e1001516.  https://doi.org/10.1371/journal.pbio.1001516.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Perez-Pascual, D., Monnet, V., & Gardan, R. (2016). Bacterial cell–cell communication in the host via RRNPP peptide-binding regulators. Frontiers in Microbiology, 7(e1002190), 1043–1048.  https://doi.org/10.3389/fmicb.2016.00706.CrossRefGoogle Scholar
  62. 62.
    Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612.  https://doi.org/10.1002/jcc.20084.CrossRefPubMedGoogle Scholar
  63. 63.
    Pinkston, K. L., Gao, P., Diaz-Garcia, D., Sillanpää, J., Nallapareddy, S. R., Murray, B. E., & Harvey, B. R. (2011). The Fsr quorum-sensing system of Enterococcus faecalis modulates surface display of the collagen-binding MSCRAMM Ace through regulation of gelE. Journal of Bacteriology, 193(17), 4317–4325.  https://doi.org/10.1128/JB.05026-11.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Pottathil, M., & Lazazzera, B. A. (2003). The extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis. Frontiers in Bioscience: A Journal and Virtual Library, 8, d32–d45.CrossRefGoogle Scholar
  65. 65.
    Rella, A., Yang, M. W., Gruber, J., Montagna, M. T., Luberto, C., Zhang, Y.-M., & Del Poeta, M. (2011). Pseudomonas aeruginosa inhibits the growth of Cryptococcus species. Mycopathologia, 173(5–6), 451–461.  https://doi.org/10.1007/s11046-011-9494-7.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Shi, K., Brown, C. K., Gu, Z.-Y., Kozlowicz, B. K., Dunny, G. M., Ohlendorf, D. H., & Earhart, C. A. (2005). Structure of peptide sex pheromone receptor PrgX and PrgX/pheromone complexes and regulation of conjugation in Enterococcus faecalis. Proceedings of the National Academy of Sciences of the United States of America, 102(51), 18596–18601.  https://doi.org/10.1073/pnas.0506163102.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Shukla, V., & Bhathena, Z. (2016a). Broad spectrum anti-quorum sensing activity of tannin-rich crude extracts of Indian medicinal plants. Scientifica, 2016(5), 5823013–5823018.  https://doi.org/10.1155/2016/5823013.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Shukla, V., & Bhathena, Z. (2016b). Research article broad spectrum anti-quorum sensing activity of tannin-rich crude extracts of Indian medicinal plants. Scientifica, 2016(5), 1–8.  https://doi.org/10.1155/2016/5823013.CrossRefGoogle Scholar
  69. 69.
    Singh, A. K., Prakash, P., Singh, R., Nandy, N., Firdaus, Z., Bansal, M., et al. (2017). Curcumin quantum dots mediated degradation of bacterial biofilms. Frontiers in Microbiology, 8, 48–17.  https://doi.org/10.3389/fmicb.2017.01517.CrossRefGoogle Scholar
  70. 70.
    Slamti, L., Lemy, C., Henry, C., Guillot, A., Huillet, E., & Lereclus, D. (2016). CodY regulates the activity of the virulence quorum sensor PlcR by controlling the import of the signaling peptide PapR in Bacillus thuringiensis. Frontiers in Microbiology, 6(e1002629), 1043–1014.  https://doi.org/10.3389/fmicb.2015.01501.CrossRefGoogle Scholar
  71. 71.
    Slamti, L., Perchat, S., Huillet, E., & Lereclus, D. (2014). Quorum sensing in Bacillus thuringiensis is required for completion of a full infectious cycle in the insect. Toxins, 6(12), 2239–2255.  https://doi.org/10.3390/toxins6082239.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Smits, W. K., Bongiorni, C., Veening, J.-W., Hamoen, L. W., Kuipers, O. P., & Perego, M. (2007). Temporal separation of distinct differentiation pathways by a dual specificity Rap-Phr system in Bacillus subtilis. Molecular Microbiology, 65(1), 103–120.  https://doi.org/10.1111/j.1365-2958.2007.05776.x.CrossRefPubMedGoogle Scholar
  73. 73.
    Stephenson, S., Mueller, C., Jiang, M., & Perego, M. (2003). Molecular analysis of Phr peptide processing in Bacillus subtilis. Journal of Bacteriology, 185(16), 4861–4871.  https://doi.org/10.1128/JB.185.16.4861-4871.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sturme, M. H. J., Kleerebezem, M., Nakayama, J., Akkermans, A. D. L., Vaugha, E. E., & de Vos, W. M. (2002). Cell to cell communication by autoinducing peptides in gram-positive bacteria. Antonie Van Leeuwenhoek, 81(1–4), 233–243.CrossRefGoogle Scholar
  75. 75.
    Taga, M. E., Miller, S. T., & Bassler, B. L. (2003). Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Molecular Microbiology, 50(4), 1411–1427.  https://doi.org/10.1046/j.1365-2958.2003.03781.x.CrossRefPubMedGoogle Scholar
  76. 76.
    Tashiro, Y., Ichikawa, S., Nakajima-Kambe, T., Uchiyama, H., & Nomura, N. (2010). Pseudomonas quinolone signal affects membrane vesicle production in not only gram-negative but also gram-positive bacteria. Microbes and Environments, 25(2), 120–125.  https://doi.org/10.1264/jsme2.ME09182.CrossRefPubMedGoogle Scholar
  77. 77.
    Teasdale, M. E., Liu, J., Wallace, J., Akhlaghi, F., & Rowley, D. C. (2009). Secondary metabolites produced by the marine bacterium Halobacillus salinus that inhibit quorum sensing-controlled phenotypes in gram-negative bacteria. Applied and Environmental Microbiology, 75(3), 567–572.  https://doi.org/10.1128/AEM.00632-08.CrossRefPubMedGoogle Scholar
  78. 78.
    Trappetti, C., McAllister, L. J., Chen, A., Wang, H., Paton, A. W., Oggioni, M. R., … Paton, J. C. (2017). Autoinducer 2 signaling via the phosphotransferase FruA drives galactose utilization by Streptococcus pneumoniae, resulting in hypervirulence. mBio, 8(1), e02269–02216-02218. doi: https://doi.org/10.1128/mBio.02269-16.
  79. 79.
    Tsuchikama, K., Zhu, J., Lowery, C. A., Kaufmann, G. F., & Janda, K. D. (2012). C4-Alkoxy-HPD: A potent class of synthetic modulators surpassing nature in AI-2 quorum sensing. Journal of the American Chemical Society, 134(33), 13562–13564.  https://doi.org/10.1021/ja305532y.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Vendeville, A., Winzer, K., Heurlier, K., Tang, C. M., & Hardie, K. R. (2005). Making ‘sense’ of metabolism: Autoinducer-2, LuxS and pathogenic bacteria. Nature Reviews. Microbiology, 3(5), 383–396.  https://doi.org/10.1038/nrmicro1146.CrossRefPubMedGoogle Scholar
  81. 81.
    Verbeke, F., De Craemer, S., Debunne, N., Janssens, Y., Wynendaele, E., Van de Wiele, C., & De Spiegeleer, B. (2017). Peptides as quorum sensing molecules: Measurement techniques and obtained levels in vitro and in vivo. Frontiers in Neuroscience, 11, 575–518.  https://doi.org/10.3389/fnins.2017.00183.CrossRefGoogle Scholar
  82. 82.
    Wang, B., & Muir, T. W. (2016). Regulation of virulence in Staphylococcus aureus: Molecular mechanisms and remaining puzzles. Cell Chemical Biology, 23(2), 214–224.  https://doi.org/10.1016/j.chembiol.2016.01.004.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Wang, Y., Yi, L., Wang, S., Fan, H., Ding, C., Mao, X., & Lu, C. (2015). Crystal structure and identification of two key amino acids involved in AI-2 production and biofilm formation in Streptococcus suis LuxS. PLoS One, 10(10), e0138826–e0138813.  https://doi.org/10.1371/journal.pone.0138826.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Wolf, D., Rippa, V., Mobarec, J. C., Sauer, P., Adlung, L., Kolb, P., & Bischofs, I. B. (2016). The quorum-sensing regulator ComA from Bacillus subtilis activates transcription using topologically distinct DNA motifs. Nucleic Acids Research, 44(5), 2160–2172.  https://doi.org/10.1093/nar/gkv1242.CrossRefPubMedGoogle Scholar
  85. 85.
    Xu, G.-M. (2016). Relationships between the regulatory systems of quorum sensing and multidrug resistance. Frontiers in Microbiology, 7(114), 829–826.  https://doi.org/10.3389/fmicb.2016.00958.CrossRefGoogle Scholar
  86. 86.
    Xu, L., Li, H., Vuong, C., Vadyvaloo, V., Wang, J., Yao, Y., et al. (2006). Role of the luxS quorum-sensing system in biofilm formation and virulence of Staphylococcus epidermidis. Infection and Immunity, 74(1), 488–496.  https://doi.org/10.1128/IAI.74.1.488-496.2006.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Yin, J., Ding, X., Xia, L., Yu, Z., Lv, Y., Hu, S., et al. (2011). Transcription of gene in an acrystalliferous strain of Bacillus thuringiensis XBU001 positively regulated by the metalloprotease camelysin gene at the onset of stationary phase. FEMS Microbiology Letters, 318(1), 92–100.  https://doi.org/10.1111/j.1574-6968.2011.02247.x.CrossRefPubMedGoogle Scholar
  88. 88.
    Youk, H., & Lim, W. A. (2014). Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science (New York, N.Y.), 343(6171), 1242782–1242782.  https://doi.org/10.1126/science.1242782.CrossRefGoogle Scholar
  89. 89.
    Yu, D., Zhao, L., Xue, T., & Sun, B. (2012). Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiology, 12(1), 288.  https://doi.org/10.1186/1471-2180-12-288.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Zhou, L., Slamti, L., Nielsen-LeRoux, C., Lereclus, D., & Raymond, B. (2014). The social biology of quorum sensing in a naturalistic host pathogen system. Current Biology, 24(20), 2417–2422.  https://doi.org/10.1016/j.cub.2014.08.049.CrossRefPubMedGoogle Scholar
  91. 91.
    Zouhir, S., Perchat, S., Nicaise, M., Perez, J., Guimaraes, B., Lereclus, D., & Nessler, S. (2013). Peptide-binding dependent conformational changes regulate the transcriptional activity of the quorum-sensor NprR. Nucleic Acids Research, 41(16), 7920–7933.  https://doi.org/10.1093/nar/gkt546.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Hormel InstituteUniversity of MinnesotaAustinUSA

Personalised recommendations