Intra and Inter-Species Communication in Microbes: Living with Complex and Sociable Neighbors

  • G. Mohana Sheela
  • A. M. V. N. Prathyusha
  • Nageswara Rao Reddy Neelapu
  • Pallaval Veera Bramhachari


Quorum sensing is a signaling mechanism wherein the microbes interact with each other through diverse chemical signals, known as auto inducers. Microbes not only synthesize, secrete, detect and respond to the chemical signals but also sense the signals that they do not synthesize in their immediate environment to discriminate their neighbors from others. Intra and inter-species communications between microbes surrounded by biofilm could be antagonistic, such as competition over nutrients and growth inhibition, or synergistic. These comprise the mixed biofilm development by co-aggregation; metabolic cooperation where one species utilizes a metabolite produced by its nearest species, along with augmented resistance to antibiotics or immune responses host. Interestingly bioluminescence, virulence factor expression, antimicrobial resistance, sporing and maturation of microbes also depend on mixed communications. These favourable interactions in mixed biofilms have important environmental, industrial and clinical connotations. The present review emphasizes the current knowledge relating to intra and species auto inducers and their role in activation of genes along with the receptors and signal molecules released by host cells.


Auto inducers Intra and inter communication Quorum sensing Multi-species biofilm formation 



Dr. PVBC is grateful to Krishna University for providing necessary facilities to carry out the research work and for extending constant support.

Conflict of Interest

The author declares that there is no conflict of interest.


  1. 1.
    An, D., Danhorn, T., Fuqua, C., & Parsek, M. R. (2006). Quorum sensing and motility mediate interactions between Pseudomonas aeruginosa and Agrobacterium tumefaciens in biofilm cocultures. Proceedings of the National Academy of Sciences of the United States of America, 103(10), 3828–3833.CrossRefGoogle Scholar
  2. 2.
    Anetzberger, C., Schell, U., & Jung, K. (2012). Single cell analysis of Vibrio harveyi uncovers functional heterogeneity in response to quorum sensing signals. BMC Microbiology, 12(1), 209.CrossRefGoogle Scholar
  3. 3.
    Aprianto, R., Slager, J., Holsappel, S., & Veening, J.-W. (2016). Time-resolved dual RNA-seq reveals extensive rewiring of lung epithelial and pneumococcal transcriptomes during early infection. Genome Biology, 17, 198.CrossRefGoogle Scholar
  4. 4.
    Bassler, B. L., & Losick, R. (2006). Bacterially speaking. Cell, 125(2), 237–246.CrossRefGoogle Scholar
  5. 5.
    Bassler, B. L., Wright, M., & Silverman, M. R. (1994). Multiple signalling systems controlling expression of luminescence in Vibrio harveyi: Sequence and function of genes encoding a second sensory pathway. Molecular Microbiology, 13(2), 273–286.CrossRefGoogle Scholar
  6. 6.
    Bassler, B. L., Wright, M., Showalter, R. E., & Silverman, M. R. (1993). Intercellular signalling in Vibrio harveyi: Sequence and function of genes regulating expression of luminescence. Molecular Microbiology, 9, 773–786.CrossRefGoogle Scholar
  7. 7.
    Case, R. J., Labbate, M., & Kjelleberg, S. (2008). AHL-driven quorum-sensing circuits: Their frequency and function among the Proteobacteria. The ISME Journal, 2(4), 345. haw.CrossRefGoogle Scholar
  8. 8.
    Comella, N., & Grossman, A. D. (2005). Conservation of genes and processes controlled by the quorum response in bacteria: Characterization of genes controlled by the quorum-sensing transcription factor ComA in Bacillus subtilis. Molecular Microbiology, 57, 1159–1174.CrossRefGoogle Scholar
  9. 9.
    Cugini, C., Calfee, M., Farrow, J. M., III, Morales, D. K., Pesci, E. C., & Hogan, D. A. (2007). Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. Molecular Microbiology, 65, 896–906.CrossRefGoogle Scholar
  10. 10.
    Damron, F. H., Oglesby-Sherrouse, A. G., Wilks, A., & Barbier, M. (2016). Dual-seq transcriptomics reveals the battle for iron during Pseudomonas aeruginosa acute murine pneumonia. Scientific Reports, 6, srep39172.CrossRefGoogle Scholar
  11. 11.
    Darch, S. E., West, S. A., Winzer, K., & Diggle, S. P. (2012). Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 109, 8259–8263.CrossRefGoogle Scholar
  12. 12.
    Deng, Y., Wu, J. E., Tao, F., & Zhang, L. H. (2010). Listening to a new language: DSF-based quorum sensing in Gram-negative bacteria. Chemical Reviews, 111(1), 160–173.CrossRefGoogle Scholar
  13. 13.
    Duan, K., Dammel, C., Stein, J., Rabin, H., & Surette, M. G. (2003). Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Molecular Microbiology, 50(5), 1477–1491.CrossRefGoogle Scholar
  14. 14.
    Eberl, L., & Tummler, B. (2004). Pseudomonas aeruginosa and Burkholderia cepacia in cystic G brosis: Genome evolution, interactions and adaptation. International Journal of Medical Microbiology, 294, 123–131.CrossRefGoogle Scholar
  15. 15.
    Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269.CrossRefGoogle Scholar
  16. 16.
    Han, S. W., Lee, S. W., & Ronald, P. C. (2011a). Secretion, modification, and regulation of Ax21. Current Opinion in Microbiology, 14, 62–67.CrossRefGoogle Scholar
  17. 17.
    Han, S. W., Sriariyanun, M., Lee, S. W., Sharma, M., Bahar, O., Bower, Z., & Ronald, P. C. (2011b). Small protein-mediated quorum sensing in a Gram-negative bacterium. PLoS One, 6, e29192.CrossRefGoogle Scholar
  18. 18.
    Harrison, F., & Buckling, A. (2009). Cooperative production of siderophores by Pseudomonas aeruginosa. Frontiers in Bioscience, 14, 4113–4126.CrossRefGoogle Scholar
  19. 19.
    Hawver, L. A., Jung, S. A., & Ng, W. L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews, 40(5), 738–752. fuq.CrossRefGoogle Scholar
  20. 20.
    Hibbing, M. E., Fuqua, C., Parsek, M. R., & Peterson, S. B. (2010). Bacterial competition: Surviving and thriving in the microbial jungle. Nature Reviews Microbiology, 8, 15–25.CrossRefGoogle Scholar
  21. 21.
    Lazazzera, B. A. (2000). Quorum sensing and starvation: Signals for entry into stationary phase. Current Opinion in Microbiology, 3, 177–182.CrossRefGoogle Scholar
  22. 22.
    Li, Y.-H., & Tian, X. (2012). Quorum sensing and bacterial social interactions inbiofilms. Sensors (Basel), 12, 2519–2538.CrossRefGoogle Scholar
  23. 23.
    Li, Z., & Nair, S. K. (2012). Quorum sensing: How bacteria can coordinate activity and synchronize their response to external signals? Protein Science, 21(10), 1403–1417.CrossRefGoogle Scholar
  24. 24.
    Lupp, C., & Ruby, E. G. (2005). Vibrio fischeri uses two quorum-sensing systems for the regulation of early and late colonization factors. Journal of Bacteriology, 187(11), 3620–3629.CrossRefGoogle Scholar
  25. 25.
    Ng, W. L., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43, 197–222.CrossRefGoogle Scholar
  26. 26.
    Nouaille, S., Rault, L., Jeanson, S., Loubière, P., Le Loir, Y., & Even, S. (2014). Contribution of Lactococcus lactis reducing properties to the downregulation of a major virulence regulator in Staphylococcus aureus, the agr system. Applied and Environmental Microbiology, 80(22), 7028–7035.CrossRefGoogle Scholar
  27. 27.
    Novick, R. P., & Geisinger, E. (2008). Quorum sensing in staphylococci. Annual Review of Genetics, 42, 541–564.CrossRefGoogle Scholar
  28. 28.
    Nuss, A. M., Beckstette, M., Pimenova, M., Schmuhl, C., Opitz, W., Pisano, F., Heroven, A. K., & Dersch, P. (2017). Tissue dual RNA-seq allows fast discovery of infection-specific functions and riboregulators shaping host–pathogen transcriptomes. Proceedings of the National Academy of Sciences, 114, E791–E800.CrossRefGoogle Scholar
  29. 29.
    Pereira, C. S., Thompson, J. A., & Xavier, K. B. (2012). AI-2-mediated signalling in bacteria. FEMS Microbiology Reviews.
  30. 30.
    Prajapat, M. K., & Saini, S. (2018). Logic of two antagonizing intra-species quorum sensing systems in bacteria. Biosystems, 165, 88–98.CrossRefGoogle Scholar
  31. 31.
    Prajapat, M. K., Shroff, I., Brajesh, R. G., & Saini, S. (2016). Analysis of a strategy for cooperating cells to survive the presence of cheaters. Molecular BioSystems, 12(11), 3338–3346.CrossRefGoogle Scholar
  32. 32.
    Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2, a012427.CrossRefGoogle Scholar
  33. 33.
    Rutherford, S. T., van Kessel, J. C., Shao, Y., & Bassler, B. L. (2011). AphA and LuxR/HapR reciprocally control quorum sensing in vibrios. Genes & Development, 25(4), 397–408.CrossRefGoogle Scholar
  34. 34.
    Schuster, M., Joseph Sexton, D., Diggle, S. P., & Peter Greenberg, E. (2013). Acyl-homoserine lactone quorum sensing: From evolution to application. Annual Review of Microbiology, 67, 43–63.CrossRefGoogle Scholar
  35. 35.
    Shiner, E. K., Rumbaugh, K. P., & Williams, S. C. (2005). Interkingdom signaling: Deciphering the language of acyl homoserine lactones. FEMS Microbiology Reviews, 29, 935–947.CrossRefGoogle Scholar
  36. 36.
    Song, Y., He, J. Z., Wang, R. K., Ma, J. Z., & Zou, L. (2018). Effect of SrtA on interspecies adherence of oral bacteria. Current Medical Science, 38(1), 160–166.CrossRefGoogle Scholar
  37. 37.
    Thanert, R., Goldmann, O., Beineke, A., & Medina, E. (2017). Host-inherent variability influences the transcriptional response of Staphylococcus aureus during in vivo infection. Nature Communications, 8, 14268.CrossRefGoogle Scholar
  38. 38.
    Veselova, M., Kholmeckaya, M., Klein, S., Voronina, E., Lipasova, V., Metlitskaya, A., et al. (2003). Production of N-acylhomoserine lactone signal molecules by gram-negative soil-borne and plant-associated bacteria. Folia Microbiologia (Praha), 48, 794–798.CrossRefGoogle Scholar
  39. 39.
    Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346.CrossRefGoogle Scholar
  40. 40.
    Waters, C. M., & Bassler, B. L. (2006). The Vibrio harveyi quorum-sensing system uses shared regulatory components to discriminate between multiple autoinducers. Genes & Development, 20(19), 2754–2767.CrossRefGoogle Scholar
  41. 41.
    Walters, M., & Sperandio, V. (2006). Quorum sensing in Escherichia coli and Salmonella. International Journal of Medical Microbiology, 296(2–3), 125–131.CrossRefGoogle Scholar
  42. 42.
    Werner, K. M., Perez, L. J., Ghosh, R., Semmelhack, M. F., & Bassler, B. L. (2014). Caenorhabditis elegans recognizes a bacterial quorum-sensing signal molecule through the AWCON neuron. The Journal of Biological Chemistry, 289(38), 26566–26573.CrossRefGoogle Scholar
  43. 43.
    Winans, S. C. (2011). A new family of quorum sensing pheromones synthesized using S-adenosylmethionine and Acyl-CoAs. Molecular Microbiology, 79(6), 1403–1406.CrossRefGoogle Scholar
  44. 44.
    Wolf, T., Kämmer, P., Brunke, S., & Linde, J. (2018). Two’s company: Studying interspecies relationships with dual RNA-seq. Current Opinion in Microbiology, 42, 7–12.CrossRefGoogle Scholar
  45. 45.
    Zhu, H., Thuruthyil, S. J., & Willcox, M. D. (2001). Production of N-acyl homoserine lactones by gram-negative bacteria isolated from contact lens wearers. Clinical & Experimental Ophthalmology, 29, 150–152.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • G. Mohana Sheela
    • 1
  • A. M. V. N. Prathyusha
    • 2
  • Nageswara Rao Reddy Neelapu
    • 3
  • Pallaval Veera Bramhachari
    • 2
  1. 1.Department of BiotechnologyVignan UniversityGunturIndia
  2. 2.Department of BiotechnologyKrishna UniversityMachilipatnamIndia
  3. 3.Department of Biochemistry and BioinformaticsGITAM Institute of Science, Gandhi Institute of Technology and Management (GITAM)VisakhapatnamIndia

Personalised recommendations