Advertisement

Quorum Sensing and Biofilm Disassembly Process in Pseudomonas aeruginosa, Staphylococcus aureus and Xanthomonas campestris

  • Santosh Kumar Singh
Chapter

Abstract

Quorum sensing (QS) is a cooperative activity among bacterial cells that is mediated by extracellular cell signaling biomolecules and regulates multiple social traits like biofilm. Similar to QS, biofilm formation is also a cooperative activity among bacterial cell population that leads to formation of extracellular matrix in which bacterial cells are living embedded. Multiple findings intuitively indicate that QS may regulate biofilm formation when cell density of bacterial populations reaches at threshold levels.

However, a group of studies provide convincing evidences that QS initiates in established biofilm and leads to maturation and dispersion of biofilm. This chapter will explain the emerging concepts that QS regulates biofilm disassembly process using three pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus and Xanthomonas campestris) as example.

Keywords

Bacteria Biofilm eDNA Quorum sensing Bacterial adhesins 

References

  1. 1.
    Novick, R. P., & Geisinger, E. (2008). Quorum sensing in staphylococci. Annual Review of Genetics, 42, 541–564.  https://doi.org/10.1146/annurev.genet.42.110807.091640.CrossRefPubMedGoogle Scholar
  2. 2.
    Ng, W. L., & Bassler, B. L. (2009). Bacterial quorum-sensing network architectures. Annual Review of Genetics, 43, 197–222.  https://doi.org/10.1146/annurev-genet-102108-134304.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2.  https://doi.org/10.1101/cshperspect.a012427.CrossRefGoogle Scholar
  4. 4.
    Costerton, J. W., et al. (1987). Bacterial biofilms in nature and disease. Annual Review of Microbiology, 41, 435–464.  https://doi.org/10.1146/annurev.mi.41.100187.002251.CrossRefPubMedGoogle Scholar
  5. 5.
    Williams, P., & Camara, M. (2009). Quorum sensing and environmental adaptation in Pseudomonas aeruginosa: A tale of regulatory networks and multifunctional signal molecules. Current Opinion in Microbiology, 12, 182–191.  https://doi.org/10.1016/j.mib.2009.01.005.CrossRefPubMedGoogle Scholar
  6. 6.
    Davies, D. G., et al. (1998). The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science, 280, 295–298.CrossRefGoogle Scholar
  7. 7.
    Shrout, J. D., et al. (2006). The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Molecular Microbiology, 62, 1264–1277.  https://doi.org/10.1111/j.1365-2958.2006.05421.x.CrossRefGoogle Scholar
  8. 8.
    Allesen-Holm, M., et al. (2006). A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Molecular Microbiology, 59, 1114–1128.  https://doi.org/10.1111/j.1365-2958.2005.05008.x.CrossRefPubMedGoogle Scholar
  9. 9.
    Sakuragi, Y., & Kolter, R. (2007). Quorum-sensing regulation of the biofilm matrix genes (pel) of Pseudomonas aeruginosa. Journal of Bacteriology, 189, 5383–5386.  https://doi.org/10.1128/JB.00137-07.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Ueda, A., & Wood, T. K. (2009). Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathogens, 5, e1000483.  https://doi.org/10.1371/journal.ppat.1000483.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Diggle, S. P., et al. (2003). The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl-dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Molecular Microbiology, 50, 29–43.CrossRefGoogle Scholar
  12. 12.
    Davey, M. E., Caiazza, N. C., & O’Toole, G. A. (2003). Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. Journal of Bacteriology, 185, 1027–1036.CrossRefGoogle Scholar
  13. 13.
    Lequette, Y., & Greenberg, E. P. (2005). Timing and localization of rhamnolipid synthesis gene expression in Pseudomonas aeruginosa biofilms. Journal of Bacteriology, 187, 37–44.  https://doi.org/10.1128/JB.187.1.37-44.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Pamp, S. J., & Tolker-Nielsen, T. (2007). Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. Journal of Bacteriology, 189, 2531–2539.  https://doi.org/10.1128/JB.01515-06.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Boles, B. R., Thoendel, M., & Singh, P. K. (2005). Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Molecular Microbiology, 57, 1210–1223.  https://doi.org/10.1111/j.1365-2958.2005.04743.x.CrossRefPubMedGoogle Scholar
  16. 16.
    Irie, Y., O’Toole, G. A., & Yuk, M. H. (2005). Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiology Letters, 250, 237–243.  https://doi.org/10.1016/j.femsle.2005.07.012.CrossRefPubMedGoogle Scholar
  17. 17.
    Singh, N., Pemmaraju, S. C., Pruthi, P. A., Cameotra, S. S., & Pruthi, V. (2013). Candida biofilm disrupting ability of di-rhamnolipid (RL-2) produced from Pseudomonas aeruginosa DSVP20. Applied Biochemistry and Biotechnology, 169, 2374–2391.  https://doi.org/10.1007/s12010-013-0149-7.CrossRefPubMedGoogle Scholar
  18. 18.
    Jensen, P. O., et al. (2007). Rapid necrotic killing of polymorphonuclear leukocytes is caused by quorum-sensing-controlled production of rhamnolipid by Pseudomonas aeruginosa. Microbiology, 153, 1329–1338.  https://doi.org/10.1099/mic.0.2006/003863-0.CrossRefPubMedGoogle Scholar
  19. 19.
    Vuong, C., Saenz, H. L., Gotz, F., & Otto, M. (2000). Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. The Journal of Infectious Diseases, 182, 1688–1693.  https://doi.org/10.1086/317606.CrossRefPubMedGoogle Scholar
  20. 20.
    Boles, B. R., & Horswill, A. R. (2008). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathogens, 4, e1000052.  https://doi.org/10.1371/journal.ppat.1000052.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Queck, S. Y., et al. (2008). RNAIII-independent target gene control by the agr quorum-sensing system: Insight into the evolution of virulence regulation in Staphylococcus aureus. Molecular Cell, 32, 150–158.  https://doi.org/10.1016/j.molcel.2008.08.005.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dunman, P. M., et al. (2001). Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. Journal of Bacteriology, 183, 7341–7353.  https://doi.org/10.1128/JB.183.24.7341-7353.2001.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Vergara-Irigaray, M., et al. (2009). Relevant role of fibronectin-binding proteins in Staphylococcus aureus biofilm-associated foreign-body infections. Infection and Immunity, 77, 3978–3991.  https://doi.org/10.1128/IAI.00616-09.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    O’Neill, E., et al. (2008). A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. Journal of Bacteriology, 190, 3835–3850.  https://doi.org/10.1128/JB.00167-08.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Merino, N., et al. (2009). Protein A-mediated multicellular behavior in Staphylococcus aureus. Journal of Bacteriology, 191, 832–843.  https://doi.org/10.1128/JB.01222-08.CrossRefPubMedGoogle Scholar
  26. 26.
    Shanks, R. M., et al. (2008). Genetic evidence for an alternative citrate-dependent biofilm formation pathway in Staphylococcus aureus that is dependent on fibronectin binding proteins and the GraRS two-component regulatory system. Infection and Immunity, 76, 2469–2477.  https://doi.org/10.1128/IAI.01370-07.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Schwartz, K., Syed, A. K., Stephenson, R. E., Rickard, A. H., & Boles, B. R. (2012). Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathogens, 8, e1002744.  https://doi.org/10.1371/journal.ppat.1002744.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yu, D., Zhao, L., Xue, T., & Sun, B. (2012). Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiology, 12, 288.  https://doi.org/10.1186/1471-2180-12-288.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Wang, L. H., et al. (2004). A bacterial cell-cell communication signal with cross-kingdom structural analogues. Molecular Microbiology, 51, 903–912.CrossRefGoogle Scholar
  30. 30.
    Slater, H., Alvarez-Morales, A., Barber, C. E., Daniels, M. J., & Dow, J. M. (2000). A two-component system involving an HD-GYP domain protein links cell-cell signalling to pathogenicity gene expression in Xanthomonas campestris. Molecular Microbiology, 38, 986–1003.CrossRefGoogle Scholar
  31. 31.
    He, Y. W., et al. (2006). Dual signaling functions of the hybrid sensor kinase RpfC of Xanthomonas campestris involve either phosphorelay or receiver domain-protein interaction. The Journal of Biological Chemistry, 281, 33414–33421.  https://doi.org/10.1074/jbc.M606571200.CrossRefPubMedGoogle Scholar
  32. 32.
    He, Y. W., et al. (2006). Genome scale analysis of diffusible signal factor regulon in Xanthomonas campestris pv. campestris: identification of novel cell-cell communication-dependent genes and functions. Molecular Microbiology, 59, 610–622.  https://doi.org/10.1111/j.1365-2958.2005.04961.x.CrossRefPubMedGoogle Scholar
  33. 33.
    Tao, F., Swarup, S., & Zhang, L. H. (2010). Quorum sensing modulation of a putative glycosyltransferase gene cluster essential for Xanthomonas campestris biofilm formation. Environmental Microbiology, 12, 3159–3170.  https://doi.org/10.1111/j.1462-2920.2010.02288.x.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Santosh Kumar Singh
    • 1
  1. 1.Molecular Biology Unit, Institute of Medical SciencesBanaras Hindu UniversityVaranasiIndia

Personalised recommendations