Quorum Sensing and Its Role in Agrobacterium Mediated Gene Transfer

  • Nageswara Rao Reddy Neelapu
  • Titash Dutta
  • Surekha Challa


Quorum sensing (QS) is a bacterial communication mechanism where individual cells produce and respond to small chemical signals. Literature reports activities such as conjugal transfer of the Ti plasmid; production of specific enzymes, exopolysaccharide, antibiotics, cyanide (HCN), hemolysin, neuraminidase, pyocyanin and rhamnolipid; cell division, bioluminescence, expression of rhizosphere genes and swarming motility are modulated by QS system in different bacteria. Role of QS system, chemical signals, and regulators of QS in replication as well as horizontal transfer of tumor inducing (Ti) plasmid is well established. In this chapter, we review the importance of different types of QS systems, chemical signaling molecules and regulators in Agrobacterium tumefaciens to gain more insights in understanding the conjugal transfer of Ti plasmid.


Quorum sensing system Chemical signals Quorum sensors Agrobacterium tumefaciens 



CS, NNR and TD are grateful to GITAM (Deemed to be University) for providing necessary facilities to carry out the research work and for extending constant support in writing this chapter. TD is thankful for financial support in the form of DST Inspire Fellowship (IF 160964), Department of Science and Technology, New Delhi.


  1. 1.
    Sureshchandra, B. (2010). Quorum sensing-cell to cell communication in bacteria. Journal of Endodontology, 22, 97–101.Google Scholar
  2. 2.
    Waters, C. M., & Bassler, B. L. (2005). Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology, 21, 319–346.Google Scholar
  3. 3.
    Camilli, A., & Bassler, B. L. (2006). Bacterial small-molecule signaling pathways. Science, 311(5764), 1113–1116.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Rutherford, S. T., & Bassler, B. L. (2012). Bacterial quorum sensing: Its role in virulence and possibilities for its control. Cold Spring Harbor Perspectives in Medicine, 2(11), a012427.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Whiteley, M., Diggle, S. P., & Greenberg, E. P. (2017). Progress in and promise of bacterial quorum sensing research. Nature, 551(7680), 313–320.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Castillo-Juárez, I., Maeda, T., Mandujano-Tinoco, E. A., Tomás, M., Pérez-Eretza, B., García-Contreras, S. J., Wood, T. K., & García-Contreras, R. (2015). Role of quorum sensing in bacterial infections. World Journal of Clinical Cases: WJCC, 3(7), 575–598.PubMedGoogle Scholar
  7. 7.
    Nealson, K. H., & Hastings, J. W. (1979). Bacterial bioluminescence: Its control and ecological significance. Microbiological Reviews, 4, 496.Google Scholar
  8. 8.
    Koul, S., Prakash, J., Mishra, A., & Kalia, V. C. (2016). Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian Journal of Microbiology, 56(1), 1–8.PubMedGoogle Scholar
  9. 9.
    Kleerebezem, M., Quadri, L. E., Kuipers, O. P., & De Vos, W. M. (1997). Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Molecular Microbiology, 24(5), 895–904.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Yarwood, J. M., Bartels, D. J., Volper, E. M., & Greenberg, E. P. (2004). Quorum sensing in Staphylococcus aureus biofilms. Journal of Bacteriology, 186(6), 1838–1850.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Nakayama, J., Cao, Y., Horii, T., Sakuda, S., Akkermans, A. D., De Vos, W. M., & Nagasawa, H. (2001). Gelatinase biosynthesis-activating pheromone: A peptide lactone that mediates a quorum sensing in Enterococcus faecalis. Molecular Microbiology, 41(1), 145–154.Google Scholar
  12. 12.
    Fuqua, W. C., Winans, S. C., & Greenberg, E. P. (1994). Quorum sensing in bacteria: The LuxR-LuxI family of cell density-responsive transcriptional regulators. Journal of Bacteriology, 176(2), 269–275.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Whiteley, M., Lee, K. M., & Greenberg, E. P. (1999). Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences, 96(24), 13904–13909.Google Scholar
  14. 14.
    Zhang, H. B., Wang, L. H., & Zhang, L. H. (2002). Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences, 99(7), 4638–4643.Google Scholar
  15. 15.
    Subramoni, S., Nathoo, N., Klimov, E., & Yuan, Z. C. (2014). Agrobacterium tumefaciens responses to plant-derived signaling molecules. Frontiers in Plant Science, 5, 322.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Dong, Y. H., Wang, L. H., Xu, J. L., Zhang, H. B., Zhang, X. F., & Zhang, L. H. (2001). Quenching quorum-sensing-dependent bacterial infection by an N-acyl homoserine lactonase. Nature, 411(6839), 813–817.PubMedGoogle Scholar
  17. 17.
    Boles, B. R., & Horswill, A. R. (2008). Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathogens, 4(4), e1000052.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Nakayama, J., Tanaka, E., Kariyama, R., Nagata, K., Nishiguchi, K., Mitsuhata, R., Uemura, Y., Tanokura, M., Kumon, H., & Sonomoto, K. (2007). Siamycin attenuates fsr quorum sensing mediated by a gelatinase biosynthesis-activating pheromone in Enterococcus faecalis. Journal of Bacteriology, 189(4), 1358–1365.PubMedGoogle Scholar
  19. 19.
    Thoendel, M., Kavanaugh, J. S., Flack, C. E., & Horswill, A. R. (2010). Peptide signaling in the Staphylococci. Chemical Reviews, 111(1), 117–151.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Guiral, S., Mitchell, T. J., Martin, B., & Claverys, J. P. (2005). Competence-programmed predation of noncompetent cells in the human pathogen Streptococcus pneumoniae: Genetic requirements. Proceedings of the National Academy of Sciences of the United States of America, 102(24), 8710–8715.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Rocha-Estrada, J., Aceves-Diez, A. E., Guarneros, G., & de la Torre, M. (2010). The RNPP family of quorum-sensing proteins in Gram-positive bacteria. Applied Microbiology and Biotechnology, 87(3), 913–923.PubMedGoogle Scholar
  22. 22.
    Cooksley, C. M., Davis, I. J., Winzer, K., Chan, W. C., Peck, M. W., & Minton, N. P. (2010). Regulation of neurotoxin production and sporulation by a putative agrBD signaling system in proteolytic Clostridium botulinum. Applied and Environmental Microbiology, 76(13), 4448–4460.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Parsek, M. R., Val, D. L., Hanzelka, B. L., Cronan, J. E., & Greenberg, E. P. (1999). Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences, 96(8), 4360–4365.Google Scholar
  24. 24.
    McClean, K. H., Winson, M. K., Fish, L., Taylor, A., Chhabra, S. R., Camara, M., Daykin, M., Lamb, J. H., Swift, S., Bycroft, B. W., & Stewart, G. S. (1997). Quorum sensing and Chromobacterium violaceum: Exploitation of violacein production and inhibition for the detection of N-acylhomoserine lactones. Microbiology, 143(12), 3703–3711.PubMedGoogle Scholar
  25. 25.
    Bassler, B. L., Wright, M., Showalter, R. E., & Silverman, M. R. (1993). Intercellular signalling in Vibrio harveyi: Sequence and function of genes regulating expression of luminescence. Molecular Microbiology, 9(4), 773–786.Google Scholar
  26. 26.
    von Bodman, S. B., Bauer, W. D., & Coplin, D. L. (2003). Quorum sensing in plant-pathogenic bacteria. Annual Review of Phytopathology, 41(1), 455–482.Google Scholar
  27. 27.
    Hentzer, M., Wu, H., Andersen, J. B., Riedel, K., Rasmussen, T. B., Bagge, N., Kumar, N., Schembri, M. A., Song, Z., Kristoffersen, P., & Manefield, M. (2003). Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. The EMBO Journal, 22(15), 3803–3815.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Goo, E., Kang, Y., Kim, H., & Hwang, I. (2010). Proteomic analysis of quorum sensing-dependent proteins in Burkholderia glumae. Journal of Proteome Research, 9(6), 3184–3199.PubMedGoogle Scholar
  29. 29.
    Chernin, L. S., Winson, M. K., Thompson, J. M., Haran, S., Bycroft, B. W., Chet, I., Williams, P., & Stewart, G. S. (1998, September 1). Chitinolytic activity in Chromobacterium violaceum: Substrate analysis and regulation by quorum sensing. Journal of Bacteriology, 180(17), 4435–4441.Google Scholar
  30. 30.
    Labbate, M., Queck, S. Y., Koh, K. S., Rice, S. A., Givskov, M., & Kjelleberg, S. (2004). Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1. Journal of Bacteriology, 186(3), 692–698.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Anetzberger, C., Reiger, M., Fekete, A., Schell, U., Stambrau, N., Plener, L., Kopka, J., Schmitt-Kopplin, P., Hilbi, H., & Jung, K. (2012). Autoinducers act as biological timers in Vibrio harveyi. PLoS One, 7(10), e48310.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Lupp, C., Urbanowski, M., Greenberg, E. P., & Ruby, E. G. (2003). The Vibrio fischeri quorum sensing systems ain and lux sequentially induce luminescence gene expression and are important for persistence in the squid host. Molecular Microbiology, 50(1), 319–331.PubMedGoogle Scholar
  33. 33.
    Wenbin, N., Dejuan, Z., Feifan, L., Lei, Y., Peng, C., Xiaoxuan, Y., & Hongyu, L. (2011). Quorum-sensing system in Acidithiobacillus ferrooxidans involved in its resistance to Cu2+. Letters in Applied Microbiology, 53(1), 84–91.PubMedGoogle Scholar
  34. 34.
    Khan, S. R., Herman, J., Krank, J., Serkova, N. J., Churchill, M. E., Suga, H., & Farrand, S. K. (2007). N-(3-hydroxyhexanoyl)-L-homoserine lactone is the biologically relevant quormone that regulates the phz operon of Pseudomonas chlororaphis strain 30-84. Applied and Environmental Microbiology, 73(22), 7443–7455.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Schauder, S., Shokat, K., Surette, M. G., & Bassler, B. L. (2001). The LuxS family of bacterial autoinducers: Biosynthesis of a novel quorum-sensing signal molecule. Molecular Microbiology, 41(2), 463–476.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Neiditch, M. B., Federle, M. J., Pompeani, A. J., Kelly, R. C., Swem, D. L., Jeffrey, P. D., Bassler, B. L., & Hughson, F. M. (2006). Ligand-induced asymmetry in histidine sensor kinase complex regulates quorum sensing. Cell, 126(6), 1095–1108.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Taga, M. E., Miller, S. T., & Bassler, B. L. (2003). Lsr-mediated transport and processing of AI-2 in Salmonella typhimurium. Molecular Microbiology, 50(4), 1411–1427.PubMedGoogle Scholar
  38. 38.
    Barrios, A. F., Zuo, R., Hashimoto, Y., Yang, L., Bentley, W. E., & Wood, T. K. (2006). Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). Journal of Bacteriology, 188(1), 305–316.Google Scholar
  39. 39.
    Choi, J., Shin, D., & Ryu, S. (2007). Implication of quorum sensing in Salmonella enterica serovar typhimurium virulence: The luxS gene is necessary for expression of genes in pathogenicity island 1. Infection and Immunity, 75(10), 4885–4890.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Ohtani, K., Bhowmik, S. K., Hayashi, H., & Shimizu, T. (2002). Identification of a novel locus that regulates expression of toxin genes in Clostridium perfringens. FEMS Microbiology Letters, 209(1), 113–118.PubMedGoogle Scholar
  41. 41.
    Lyon, G. J., & Novick, R. P. (2004). Peptide signaling in Staphylococcus aureus and other Gram-positive bacteria. Peptides, 25(9), 1389–1403.PubMedGoogle Scholar
  42. 42.
    Carter, G. P., Purdy, D., Williams, P., & Minton, N. P. (2005). Quorum sensing in Clostridium difficile: Analysis of a luxS-type signalling system. Journal of Medical Microbiology, 54(2), 119–127.PubMedGoogle Scholar
  43. 43.
    Gelvin, S. B. (2000). Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual Review of Plant Biology, 51(1), 223–256.Google Scholar
  44. 44.
    Winans, S. C. (1992). Two-way chemical signaling in Agrobacterium-plant interactions. Microbiological Reviews, 56(1), 12–31.PubMedPubMedCentralGoogle Scholar
  45. 45.
    Stachel, S. E., & Zambryski, P. C. (1986). virA and virG control the plant-induced activation of the T-DNA transfer process of A. tumefaciens. Cell, 46(3), 325–333.PubMedGoogle Scholar
  46. 46.
    Rossi, L., Tinland, B., & Hohn, B. (1998). Role of virulence proteins of Agrobacterium in the plant. In The Rhizobiaceae (pp. 303–320). Dordrecht: Springer.Google Scholar
  47. 47.
    Tzfira, T., Li, J., Lacroix, B., & Citovsky, V. (2004). Agrobacterium T-DNA integration: Molecules and models. Trends in Genetics, 20(8), 375–383.PubMedGoogle Scholar
  48. 48.
    Vergunst, A. C., Schrammeijer, B., den Dulk-Ras, A., de Vlaam, C. M., Regensburg-Tuınk, T. J., & Hooykaas, P. J. (2000). VirB/D4-dependent protein translocation from Agrobacterium into plant cells. Science, 290(5493), 979–982.PubMedGoogle Scholar
  49. 49.
    van Attikum, H., Bundock, P., & Hooykaas, P. J. (2001). Non-homologous end joining proteins are required for Agrobacterium T-DNA integration. The EMBO Journal, 20(22), 6550–6558.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Haudecoeur, E., & Faure, D. (2010). A fine control of quorum-sensing communication in Agrobacterium tumefaciens. Communicative & Integrative Biology, 3(2), 84–88.Google Scholar
  51. 51.
    Barton, I. S., Fuqua, C., & Platt, T. G. (2018). Ecological and evolutionary dynamics of a model facultative pathogen: Agrobacterium and crown gall disease of plants. Environmental Microbiology, 20(1), 16–29.PubMedGoogle Scholar
  52. 52.
    Sheng, J., & Citovsky, V. (1996). Agrobacterium-plant cell DNA transport: Have virulence proteins, will travel. The Plant Cell, 8(10), 1699–1710.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Piper, K. R., Beck von Bodman, S., Hwang, I., & Farrand, S. K. (1999). Hierarchical gene regulatory systems arising from fortuitous gene associations: Controlling quorum sensing by the opine regulon in Agrobacterium. Molecular Microbiology, 32(5), 1077–1089.PubMedGoogle Scholar
  54. 54.
    Goodner, B., Hinkle, G., Gattung, S., Miller, N., Blanchard, M., Qurollo, B., Goldman, B. S., Cao, Y., Askenazi, M., Halling, C., & Mullin, L. (2001). Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science, 294(5550), 2323–2328.PubMedGoogle Scholar
  55. 55.
    Piper, K. R., von Bodman, S. B., & Farrand, S. K. (1993). Conjugation factor of Agrobacterium tumefaciens regulates Ti plasmid transfer by autoinduction. Nature, 362(6419), 448–450.PubMedGoogle Scholar
  56. 56.
    Fuqua, W. C., & Winans, S. C. (1994). A LuxR-LuxI type regulatory system activates Agrobacterium Ti plasmid conjugal transfer in the presence of a plant tumor metabolite. Journal of Bacteriology, 176(10), 2796–2806.PubMedPubMedCentralGoogle Scholar
  57. 57.
    Hwang, I., Li, P. L., Zhang, L., Piper, K. R., Cook, D. M., Tate, M. E., & Farrand, S. K. (1994). TraI, a LuxI homologue, is responsible for production of conjugation factor, the Ti plasmid N-acylhomoserine lactone autoinducer. Proceedings of the National Academy of Sciences, 91(11), 4639–4643.Google Scholar
  58. 58.
    Miller, M. B., & Bassler, B. L. (2001). Quorum sensing in bacteria. Annual Reviews in Microbiology, 55(1), 165–199.Google Scholar
  59. 59.
    Fuqua, C., & Winans, S. C. (1996). Localization of OccR activated and TraR activated promoters that express two ABC type permeases and the traR gene of Ti plasmid pTiR10. Molecular Microbiology, 20(6), 1199–1210.PubMedGoogle Scholar
  60. 60.
    Fuqua, C., Burbea, M., & Winans, S. C. (1995). Activity of the Agrobacterium Ti plasmid conjugal transfer regulator TraR is inhibited by the product of the traM gene. Journal of Bacteriology, 177(5), 1367–1373.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Chai, Y., Zhu, J., & Winans, S. C. (2001). TrlR, a defective TraR like protein of Agrobacterium tumefaciens, blocks TraR function in vitro by forming inactive TrlR: TraR dimers. Molecular Microbiology, 40(2), 414–421.PubMedGoogle Scholar
  62. 62.
    Luo, Z. Q., Qin, Y., & Farrand, S. K. (2000). The antiactivator TraM interferes with the autoinducer-dependent binding of TraR to DNA by interacting with the C-terminal region of the quorum-sensing activator. Journal of Biological Chemistry, 275(11), 7713–7722.PubMedGoogle Scholar
  63. 63.
    Hwang, I., Smyth, A. J., Luo, Z. Q., & Farrand, S. K. (1999). Modulating quorum sensing by antiactivation: TraM interacts with TraR to inhibit activation of Ti plasmid conjugal transfer genes. Molecular Microbiology, 34(2), 282–294.PubMedGoogle Scholar
  64. 64.
    Khan, S. R., Gaines, J., Roop, R. M., & Farrand, S. K. (2008). Broad-host-range expression vectors with tightly regulated promoters and their use to examine the influence of TraR and TraM expression on Ti plasmid quorum sensing. Applied and Environmental Microbiology, 74(16), 5053–5062.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Qin, Y., Luo, Z. Q., Smyth, A. J., Gao, P., von Bodman, S. B., & Farrand, S. K. (2000). Quorum sensing signal binding results in dimerization of TraR and its release from membranes into the cytoplasm. The EMBO Journal, 19(19), 5212–5221.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Matthysse, A. G., Yarnall, H., Boles, S. B., & McMahan, S. (2000). A region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells1. Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1490(1–2), 208–212.Google Scholar
  67. 67.
    Cho, H., & Winans, S. C. (2005). VirA and VirG activate the Ti plasmid repABC operon, elevating plasmid copy number in response to wound-released chemical signals. Proceedings of the National Academy of Sciences of the United States of America, 102(41), 14843–14848.PubMedPubMedCentralGoogle Scholar
  68. 68.
    Deeken, R., Engelmann, J. C., Efetova, M., Czirjak, T., Müller, T., Kaiser, W. M., Tietz, O., Krischke, M., Mueller, M. J., Palme, K., & Dandekar, T. (2006). An integrated view of gene expression and solute profiles of Arabidopsis tumors: A genome-wide approach. The Plant Cell, 18(12), 3617–3634.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Chevrot, R., Rosen, R., Haudecoeur, E., Cirou, A., Shelp, B. J., Ron, E., & Faure, D. (2006). GABA controls the level of quorum-sensing signal in Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences, 103(19), 7460–7464.Google Scholar
  70. 70.
    Surekha, C., Arundhati, A., & Rao, G. S. (2008). Factors enhancing transformation efficiency of pigeonpea (Cajanus cajan) by Agrobacterium tumefaciens. Journal of Phytological Research, 21(1), 63–70.Google Scholar
  71. 71.
    Surekha, C., Arundhati, A., & Seshagiri Rao, G. (2007). Differential response of Cajanus cajan varieties to transformation with different strains of Agrobacterium. Journal of Biological Sciences, 7(1), 176–181.Google Scholar
  72. 72.
    Surekha, C., Aruna, L., Hossain, M. A., Wani, S. H., & Neelapu, N. R. (2015). Present status and future prospects of transgenic approaches for salt tolerance in plants/crop plants. In S. H. Wani & M. A. Hossain (Eds.), Managing salt tolerance in plants (pp. 329–352). Boca Raton: CRC Press.Google Scholar
  73. 73.
    Wani, S. H., Dutta, T., Neelapu, N. R., & Surekha, C. (2017). Transgenic approaches to enhance salt and drought tolerance in plants. Plant Gene, 11, 219–231.Google Scholar
  74. 74.
    Cho, S. H., Joung, Y. H., Karna, S., Lee, H. E., Kim, J. H., Kim, J. H., Kim, D. S., & Ahn, Y. K. (2017). The development of cold resistance rootstock using Agrobacterium-mediated transformation of Arabidopsis CBF3/DREB1A in bottle gourd (Lageneraria siceraria Standl.). Scientia Horticulturae, 214, 141–146.Google Scholar
  75. 75.
    Majid, M. U., Awan, M. F., Fatima, K., Tahir, M. S., Ali, Q., Rashid, B., Rao, A. Q., Nasir, I. A., & Husnain, T. (2017, July 1). Genetic resources of chili pepper (Capsicum annuum L.) against Phytophthora capsici and their induction through various biotic and abiotic factors. Cytology and Genetics, 51(4), 296–304.Google Scholar
  76. 76.
    Surekha, Ch., Kumari, K. N., Aruna, L. V., Suneetha, G., Arundhati, A., & Kishor, P. K. (2014, January 1). Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell, Tissue and Organ Culture (PCTOC), 116(1), 27–36.Google Scholar
  77. 77.
    Surekha, C., Beena, M. R., Arundhati, A., Singh, P. K., Tuli, R., Dutta-Gupta, A., & Kirti, P. B. (2005). Agrobacterium-mediated genetic transformation of pigeon pea (Cajanus cajan (L.) Millsp.) using embryonal segments and development of transgenic plants for resistance against Spodoptera. Plant Science, 169(6), 1074–1080.Google Scholar
  78. 78.
    Parmar, N., Singh, K. H., Sharma, D., Singh, L., Kumar, P., Nanjundan, J., Khan, Y. J., Chauhan, D. K., & Thakur, A. K. (2017, August 1). Genetic engineering strategies for biotic and abiotic stress tolerance and quality enhancement in horticultural crops: A comprehensive review. 3 Biotech, 7(4), 239.Google Scholar
  79. 79.
    Hawver, L. A., Jung, S. A., & Ng, W. L. (2016). Specificity and complexity in bacterial quorum-sensing systems. FEMS Microbiology Reviews, 40(5), 738–752.PubMedPubMedCentralGoogle Scholar
  80. 80.
    Ewald, D. A., Champion, A. K., & Fry, M. R. (2017). δ-Lactone derivatives induce quorum sensing activity in Agrobacterium tumefaciens. The FASEB Journal, 31(Suppl 1), 621–623.Google Scholar
  81. 81.
    Faure, D., & Lang, J. Functions and regulation of quorum-sensing in Agrobacterium tumefaciens. Frontiers in Plant Science, 5, 14.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nageswara Rao Reddy Neelapu
    • 1
  • Titash Dutta
    • 1
  • Surekha Challa
    • 1
  1. 1.Department of Biochemistry and BioinformaticsGITAM Institute of Science, Gandhi Institute of Technology and Management (GITAM)VisakhapatnamIndia

Personalised recommendations