Advertisement

Nanobioremediation

  • Bhupendra Koul
  • Pooja Taak
Chapter

Abstract

Soil and water contamination through heavy metals, hydrocarbons and radioactive wastes is of global concern as these factors have cumulative effect on the environment and human health. Removal of contaminants from polluted soils is one of the major challenging tasks in the twenty-first century. Nanobioremediation is an emerging technology for remediation of pollutants with the aid of biosynthetic nanoparticles. Because of their unique chemical and physical properties, nanoparticles have gained the attention of scientists from different fields of environmental sciences. Nanobioremediation, an offshoot of nanotechnology, is a promising and rapidly growing soil remediation technology. The present chapter summarizes the synthesis of nanoparticles from yeast, fungi, bacteria and plants and their potential uses for remediation of polluted soils and sludges. Nanobioremidiation can be deployed where the other conventional remediation treatments do not prove to be useful because nanoparticles are less toxic to soil flora and enhance the microbial activity. Although various researches have been conducted on the physical and chemical properties of nanoparticles still, more information is required about their interaction, and adsorption with the contaminated soils. Further researches in soil-bioremediation should focus on the combined use of nanoparticles, genetically modified microbes and plants to design environment friendly, cost-effective, robust and sustainable remediation strategies.

Keywords

Nanotechnology Bioremediation Nanoparticles Contaminants Green synthesis 

References

  1. Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B: Biointerfaces 28(4):313–318CrossRefGoogle Scholar
  2. Ahmad N, Sharma S, Singh VN, Shamsi SF, Fatma A, Mehta BR (2011) Biosynthesis of silver nanoparticles from Desmodium triflorum: a novel approach towards weed utilization. Biotechnol Res Int 1:454090Google Scholar
  3. Ali DM, Thajuddin N, Jeganathan K, Gunasekaran M (2011) Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf B Biointerfaces 85:360–365CrossRefGoogle Scholar
  4. Andersson M, Österlund L, Ljungström S, Palmqvist A (2002) Preparation of nanosize anatase and rutile TiO2 by hydrothermal treatment of microemulsions and their activity for photocatalytic wet oxidation of phenol. J Phys Chem B 106(41):10674–10679CrossRefGoogle Scholar
  5. Ankamwar B (2010) Biosynthesis of gold nanoparticles (green-gold) using leaf extract of Terminalia catappa. J Chem 7(4):1334–1339Google Scholar
  6. Ankamwar B, Chaudhary M, Sastry M (2005) Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg, Met-Org, Nano-Met Chem 35(1):19–26CrossRefGoogle Scholar
  7. Arkas M, Tsiourvas D, Paleos CM (2003) Functional dendrimeric “nanosponges” for the removal of polycyclic aromatic hydrocarbons from water. Chem Mater 15(14):2844–2847CrossRefGoogle Scholar
  8. Arkas M, Allabashi R, Tsiourvas D, Mattausch EM, Perfler R (2006) Organic/inorganic hybrid filters based on dendritic and cyclodextrin “nanosponges” for the removal of organic pollutants from water. Environ Sci Technol 40(8):2771–2777PubMedCrossRefPubMedCentralGoogle Scholar
  9. Aromal SA, Vidhu VK, Philip D (2012) Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectro Acta Part A 85(1):99–104CrossRefGoogle Scholar
  10. Arulkumar S, Sabesan M (2010) Biosynthesis and characterization of gold nanoparticle using antiparkinsonian drug Mucuna pruriens plant extract. Int J Res Pharm Sci 4:417–420Google Scholar
  11. Balaji DS, Basavaraja S, Bedre MD, Prabhakar BK, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B Biointerfaces 68(1):88–92PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bali R, Razak N, Lumb A, Harris AT (2006) The synthesis of metal nanoparticles inside live plants. Nanosci Nanotechnol Int Conf IEEE Xplore 10:340592Google Scholar
  13. Bankar A, Joshi B, Kumar AR, Zinjarde S (2010) Banana peel extract mediated synthesis of gold nanoparticles. Colloids Surf B: Biointerfaces 80(1):45–50PubMedCrossRefPubMedCentralGoogle Scholar
  14. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2008) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43(5):1164–1170CrossRefGoogle Scholar
  15. Bhainsa KC, D’Souza SF (2006) Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf B: Biointerfaces 47(2):160–164PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bharde A, Wani A, Shouche Y, Joy PA, Prasad BLV, Sastry M (2005) Bacterial aerobic synthesis of nanocrystalline magnetite. J Am Chem Soc 127:9326–9327PubMedCrossRefPubMedCentralGoogle Scholar
  17. Binupriya AR, Sathishkumar M, Yun SI (2009) Myco-crystallization of silver ions to nanosized particles by live and dead cell filtrates of Aspergillus oryzae var. viridis and its bactericidal activity toward Staphylococcus aureus KCCM 12256. Ind Eng Chem Res 49(2):852–858CrossRefGoogle Scholar
  18. Boruah SK, Boruah PK, Sarma P, Medhi C, Medhi OK (2012) Green synthesis of gold nanoparticles using Camellia sinensis and kinetics of the reaction. Adv Mater Lett 3:481–486CrossRefGoogle Scholar
  19. Cao YC (2002) Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 80(297):1536–1540CrossRefGoogle Scholar
  20. Chandran SP, Chaudhary M, Pasricha R, Ahmad A, Sastry M (2006) Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract. Biotechnol Prog 22(2):577–583PubMedCrossRefPubMedCentralGoogle Scholar
  21. Chang YC, Chang SW, Chen DH (2006) Magnetic chitosan nanoparticles: studies on chitosan binding and adsorption of Co(II) ions. React Funct Polym 66(3):335–341CrossRefGoogle Scholar
  22. Chen DH, Huang SH (2004) Fast separation of bromelain by polyacrylic acid-bound iron oxide magnetic nanoparticles. Process Biochem 39(12):2207–2211CrossRefGoogle Scholar
  23. Chen J, Liu M, Zhang L, Zhang J, Jin L (2003) Application of nano TiO2 towards polluted water treatment combined with electro-photochemical method. Water Res 37(16):3815–3820PubMedCrossRefPubMedCentralGoogle Scholar
  24. Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41(8):1307–1311PubMedCrossRefPubMedCentralGoogle Scholar
  25. Chuang CS, Wang MK, Ko CH, Ou CC, Wu CH (2007) Removal of benzene and toluene by carbonized bamboo materials modified with TiO2. Bioresour Technol 99(5):954–958PubMedCrossRefPubMedCentralGoogle Scholar
  26. Dameron CT, Reese RN, Mehra RK, Kortan AR, Carroll PJ, Steigerwald ML, Winge DR (1989) Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 338(6216):596–597CrossRefGoogle Scholar
  27. Das I, Ansari SA (2009) Nanomaterials in science and technology. J Sci Indus Res 68:657–667Google Scholar
  28. Das RK, Gogoi N, Jayasekhar BP, Sharma P, Chandan M, Utpal B (2012) The synthesis of gold nanoparticles using Amaranthus spinosus leaf extract and study of their optical properties. Adv Mater Phys Chem 2:275–281CrossRefGoogle Scholar
  29. Dastjerdi R, Montazer M (2010) A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties. Colloids Surf B Biointerfaces 79(1):5–18PubMedCrossRefPubMedCentralGoogle Scholar
  30. Deshpande R, Bedre DM, Basavaraja S, Sawle B, Manjunath SY, Venkataraman A (2010) Rapid biosynthesis of irregular shaped gold nanoparticles from macerated aqueous extracellular dried clove buds (Syzygium aromaticum) solution. Colloids Surf B Biointerfaces 79:235–240CrossRefGoogle Scholar
  31. Devor R, Geiger CL, Clausen CA, Quinn J, Milum KM (2006) Emulsified nanoscale iron particles for environmental remediation of heavy metals. Abstr Pap Am Chem Soc:231Google Scholar
  32. Dhas SP, Mukerjhee A, Chandrasekaran N (2013) Phytosynthesis of silver nanoparticles using Ceriops tagal and its antimicrobial potential against human pathogens. Int J Pharm Pharm Sci 5(3):349–352Google Scholar
  33. Diallo MS, Balogh L, Shafagati A, Johnson JH Jr, Goddard WA, Tomalia DA (1999) Poly (amidoamine) dendrimers: a new class of high capacity chelating agents for Cu(II) ions. Environ Sci Technol 33(5):820–824CrossRefGoogle Scholar
  34. Dimitrov DS (2006) Interactions of antibody-conjugated nanoparticles with biological surfaces. Colloids Surf A 282:8–10CrossRefGoogle Scholar
  35. Ding Z, Zhu HY, Lu GQ, Greenfield PF (1999) Photocatalytic properties of titania pillared clays by different drying methods. J Colloid Interface Sci 209(1):193–199PubMedCrossRefPubMedCentralGoogle Scholar
  36. Dwivedi AD, Gopal K (2011) Plant-mediated biosynthesis of silver and gold nanoparticles. J Biomed Nanotechnol 7:163–164PubMedCrossRefPubMedCentralGoogle Scholar
  37. Elliott DW, Lien HL, Zhang WX (2009) Degradation of lindane by zero-valent iron nanoparticles. J Environ Eng 135:317–325CrossRefGoogle Scholar
  38. Ericka RL, Palomares RI, Navarro RE, Ronaldo Herrera-Urbina RH, Tánori J, Claudia Iñiguez-Palomares CI, Maldonado A (2013) Synthesis of silver nanoparticles using reducing agents obtained from natural sources (Rumex hymenosepalus extracts). Nanoscale Res Lett 8(1):318CrossRefGoogle Scholar
  39. Farooqui AMD, Chauhan PS, Moorthy PK, Shaik J (2010) Extraction of silver nanoparticles from the left extracts of Clerodendrum incerme. Dig J Nanomater Biostruct 5:43–49Google Scholar
  40. Fazaludeena MF, Manickamb C, Ashankyty IM, Ahmed MQ, Bege QZ (2017) Synthesis and characterizations of gold nanoparticles by Justicia gendarussa Burm F leaf extract. J Microbiol Biotechnol Res 2:23–34Google Scholar
  41. Feitz AJ, Joo SH, Guan J, Sun Q, Sedlak DL, Waite TD (2005) Oxidative transformation of contaminants using colloidal zero-valent iron. Colloids Surf A 265(1–3):88–94CrossRefGoogle Scholar
  42. Feng J, Lim TT (2005) Pathways and kinetics of carbon tetrachloride and chloroform reductions by nano-scale Fe and Fe/Ni particles: comparison with commercial micro-scale Fe and Zn. Chemosphere 59(9):1267–1277PubMedCrossRefPubMedCentralGoogle Scholar
  43. Feng J, Hu X, Yue PL, Zhu HY, Lu GQ (2003) Degradation of azo-dye orange II by a photoassisted Fenton reaction using a novel composite of iron oxide and silicate nanoparticles as a catalyst. Ind Eng Chem Res 42(10):2058–2066CrossRefGoogle Scholar
  44. Filipe V, Hawe A, Jiskoot W (2010) Critical evaluation of nanoparticle tracking analysis (NTA) by nanoSight for the measurement of nanoparticles and protein aggregates. Pharm Res 27(5):796–810PubMedPubMedCentralCrossRefGoogle Scholar
  45. Friedrich KA, Henglein F, Stimming U, Unkauf W (1998) Investigation of Pt particles on gold substrates by IR spectroscopy particle structure and catalytic activity. Colloid Surf A 134(1–2):193–206CrossRefGoogle Scholar
  46. Fu W, Yang H, Chang L, Li M, Bala H, Yu Q, Zou G (2006) Preparation and characteristics of core–shell structure nickel/silica nanoparticles. Colloids Surf A Physicochem Eng Asp 262(1–3):71–75Google Scholar
  47. Gade AK, Bonde P, Ingle AP, Marcato PD, Duran N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobaased Mater Bioenergy 2(3):243–247CrossRefGoogle Scholar
  48. Gade A, Gaikwad S, Tiwari V, Yadav A, Ingle A, Rai M (2010) Biofabrication of silver nanoparticles by Opuntia ficus-indica: in vitro antibacterial activity and study of the mechanism involved in the synthesis. Curr Nanosci 6(4):370–375CrossRefGoogle Scholar
  49. Ganesh BMM, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B: Biointerfaces 74(1):191–195CrossRefGoogle Scholar
  50. Gardea-Torresdey JL, Parsons JG, Gomez E, Peralta-Videa J, Troiani HE, Santiago P, Yacaman MJ (2002) Formation and growth of Au nanoparticles inside live alfalfa plants. Nano Lett 2(4):397–401CrossRefGoogle Scholar
  51. George VC, Kumar DN, Suresh PK, Kumar RA (2012) A review on the therapeutic potentials of parthenolide: a sesquiterpene lactone. Int Res J Pharm 3(2):69–73Google Scholar
  52. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1–4):132–140CrossRefGoogle Scholar
  53. Giasuddin AB, Kanel SR, Choi H (2007) Adsorption of humic acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ Sci Technol 41(6):2022–2027PubMedCrossRefPubMedCentralGoogle Scholar
  54. Gnanadesigan M, Anand M, Ravikumar S, Maruthupandy M, Ali MS, Vijayakumar V, Kumaraguru AK (2012) Antibacterial potential of biosynthesised silver nanoparticles using Avicennia marina mangrove plant. Appl Nanosci 2(2):143–147CrossRefGoogle Scholar
  55. Gnanajobitha G, Annadurai G, Kannan C (2012) Green synthesis of silver nanoparticle using Elettaria cardamomom and assesment of its antimicrobial activity. Int J Pharm Sci Res 3:323–330Google Scholar
  56. Gordon T, Margel S (2011) Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf 374:1–8CrossRefGoogle Scholar
  57. Guo D, Xie G, Luo J (2014) Mechanical properties of nanoparticles: basics and applications. J Phys D Appl Phys 47:1–25Google Scholar
  58. Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B: Biointerfaces 74(1):328–335PubMedCrossRefPubMedCentralGoogle Scholar
  59. He F, Zhao D, Liu J, Roberts CB (2007) Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Ind Eng Chem Res 46(1):29–34CrossRefGoogle Scholar
  60. He S, Ahang Y, Guo Z, Gu N (2008) Biological synthesis of gold nanowires using extract of Rhodopseudomonas capsulata. Biotechnol Prog 24(2):476–480PubMedCrossRefPubMedCentralGoogle Scholar
  61. Hewakuruppu YL, Dombrovsky LA, Chen C, Timchenko V, Jiang X, Baek S, Taylor RA (2013) Plasmonic “pump–probe” method to study semi-transparent nanofluids. Appl Opt 52(24):6041–6050PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hu J, Chen G, Lo IM (2005a) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39(18):4528–4536PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hu J, Lo IM, Chen G (2005b) Fast removal and recovery of Cr (VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir 21(24):11173–11179PubMedCrossRefPubMedCentralGoogle Scholar
  64. Ingle A, Rai M, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11(8):2079–2085CrossRefGoogle Scholar
  65. Jaganathan U, Inbakandan D, Ajithkumar TT, Balasubramanian T (2012) Mangrove plant, Rhizophora mucronata (Lamk, 1804) mediated one pot green synthesis of silver nanoparticles and its antibacterial activity against aquatic pathogens. Aquat Biosyst 8(1):11CrossRefGoogle Scholar
  66. Jain D, Daima HK, Kachhwaha S, Kothari SL (2009) Synthesis of plant-mediated silver nanoparticles using papaya fruit extract and evaluation of their anti-microbial activities. Dig J Nanomater Biostruct 4(3):557–563Google Scholar
  67. Jain D, Kachhwaha S, Jain R, Srivastava G, Kothari SL (2010) Novel microbial route to synthesize silver nanoparticles using spore crystal mixture of Bacillus thuringiensis. Indian J Exp Biol 48:1152–1156PubMedPubMedCentralGoogle Scholar
  68. Jia L, Zhang Q, Li Q, Song H (2009) The biosynthesis of palladium nanoparticles by antioxidants in Gardenia jasminoides Ellis: long lifetime nanocatalysts for p-nitrotoluene hydrogenation. Nanotechnology 20(38):385601PubMedCrossRefPubMedCentralGoogle Scholar
  69. Jiang S, Lee JH, Kim MG, Myung NV, Fredrickson JK, Sadowsky MJ, Hur HG (2009) Biogenic formation of As-S nanotubes by diverse Shewanella strains. Appl Environ Microbiol 75(21):6896–6899PubMedPubMedCentralCrossRefGoogle Scholar
  70. Jiemvarangkul P, Zhang WX, Lien HL (2011) Enhanced transport of polyelectrolyte stabilized nanoscale zero-valent iron (nZVI) in porous media. Chem Eng J 170:482–491CrossRefGoogle Scholar
  71. Joerger R, Klaus T, Granqvist CG (2000) Biologically produced silver–carbon composite materials for optically functional thin-film coatings. Adv Mater 12(6):407–409CrossRefGoogle Scholar
  72. Joglekar S, Kodam K, Dhaygude M, Hudlikar M (2011) Novel route for rapid biosynthesis of lead nanoparticles using aqueous extract of Jatropha curcas L. latex. Mater Lett 65(19–20):3170–3172CrossRefGoogle Scholar
  73. Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65(6):1014–1017CrossRefGoogle Scholar
  74. Kanel SR, Manning B, Charlet L, Choi H (2005) Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ Sci Technol 39(5):1291–1298PubMedCrossRefPubMedCentralGoogle Scholar
  75. Kanel SR, Greneche JM, Choi H (2006) Arsenic (V) removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ Sci Technol 40(6):2045–2050PubMedCrossRefPubMedCentralGoogle Scholar
  76. Kasi G, Shanmugam G, Ayyakannu A (2013) Phytosynthesis of silver nanoparticles using Pterocarpus santalinus leaf extract and their antibacterial properties. J Nanostruct Chem 3(1):68CrossRefGoogle Scholar
  77. Kasthuri J, Veerapandian S, Rajendiran N (2009) Biological synthesis of silver and gold nanoparticles using apiin as reducing agent. Colloids Surf B Biointerfaces 68(1):55–60PubMedCrossRefPubMedCentralGoogle Scholar
  78. Khalil NM (2013) Biogenic silver nanoparticles by Aspergillus terreus as a powerful nanoweapon against Aspergillus fumigatus. Afr J Microbiol Res 7(50):5645–5651CrossRefGoogle Scholar
  79. Klaus T, Joerger R, Olsson E, Granqvist CG (1999) Silver-based crystalline nanoparticles, microbially fabricated. Proc Nat Acad Sci 96(24):13611–13614PubMedCrossRefPubMedCentralGoogle Scholar
  80. Klaus T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol 19(1):15–20CrossRefGoogle Scholar
  81. Kondratyuk P, Yates JT Jr (2005) Desorption kinetic detection of different adsorption sites on opened carbon single walled nanotubes: the adsorption of n-nonane and CCl4. Chem Phys Lett 410(4–6):324–329CrossRefGoogle Scholar
  82. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar KM (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14(1):95–100CrossRefGoogle Scholar
  83. Labrenz M, Druschel GK, Thompson-Ebert T, Gilbert B, Welch SA, Kemner KM (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfatereducing bacteria. Science 290:1745–1747CrossRefGoogle Scholar
  84. Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341PubMedCrossRefPubMedCentralGoogle Scholar
  85. Li H, Jiang G (2009) Effects of waterborne nano-iron on medaka (Oryzias latipes): antioxidant enzymatic activity, lipid peroxida tion and histopathology. Ecotoxicol Environ Saf 7:2684–2692Google Scholar
  86. Li XQ, Zhang WX (2007) Iron nanoparticles: the core − shell structure and unique properties for Ni (II) sequestration. Langmuir 22(10):4638–4642CrossRefGoogle Scholar
  87. Li YH, Wang S, Cao A, Zhao D, Zhang X, Xu C, Luan Z, Ruan D, Liang J, Wu D, Wei B (2001) Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes. Chem Phys Lett 350:412–416CrossRefGoogle Scholar
  88. Li YH, Wang S, Luan Z, Ding J, Xu C, Wu D (2003a) Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes. Carbon 41(5):1057–1062CrossRefGoogle Scholar
  89. Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2003b) Lead adsorption on carbon nanotubes. Chem Phys Lett 357(3–4):263–266Google Scholar
  90. Li YH, Wang S, Zhang X, Wei J, Xu C, Luan Z, Wu D (2003c) Adsorption of fluoride from water by aligned carbon nanotubes. Mater Res Bull 38(3):469–476CrossRefGoogle Scholar
  91. Li YH, Di Z, Ding J, Wu D, Luan Z, Zhu Y (2005) Adsorption thermodynamic, kinetic and desorption studies of Pb2+ on carbon nanotubes. Water Res 39(4):605–609PubMedCrossRefPubMedCentralGoogle Scholar
  92. Li Y, Li X, Li J, Yin J (2006) Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res 40(6):1119–1126PubMedCrossRefPubMedCentralGoogle Scholar
  93. Li S, Shen Y, Xie A, Yu X, Zhang X, Yang L, Li C (2007) Rapid, room-temperature synthesis of amorphous selenium/protein composites using Capsicum annuum L extract. Nanotechnology 18(40):405101CrossRefGoogle Scholar
  94. Li YH, Wang S, Wei J, Zhang X, Xu C, Luan Z, Wu D, Wei B (2002) Lead adsorption on carbon nanotubes. Chem Phys Lett 357(3–4):263–266CrossRefGoogle Scholar
  95. Lien HL, Zhang WX (2001) Nanoscale iron particles for complete reduction of chlorinated ethenes. Colloids Surf A 191(1–2):97–105CrossRefGoogle Scholar
  96. Liou YH, Lo SL, Lin CJ, Hu CY, Kuan WH, Weng SC (2005) Methods for accelerating nitrate reduction using zerovalent iron at near-neutral pH: effects of H2-reducing pretreatment and copper deposition. Environ Sci Technol 39(24):9643–9648PubMedCrossRefPubMedCentralGoogle Scholar
  97. Lu C, Chiu H (2006) Adsorption of zinc (II) from water with purified carbon nanotubes. Chem Eng Sci 61(4):1138–1145CrossRefGoogle Scholar
  98. Lu C, Chung YL, Chang KF (2005) Adsorption of trihalomethanes from water with carbon nanotubes. Water Res 39(6):1183–1189PubMedCrossRefPubMedCentralGoogle Scholar
  99. Machado S, Stawiński W, Slonina P, Pinto AR, Grosso JP, Nouws HPA, Delerue-Matos C (2013) Application of green zero-valent iron nanoparticles to the remediation of soils contaminated with ibuprofen. Sci Total Environ 461:323–329PubMedCrossRefPubMedCentralGoogle Scholar
  100. Mahmoodi NM, Arami M, Limaee NY, Gharanjig K, Nourmohammadian F (2007) Nanophotocatalysis using immobilized titanium dioxide nanoparticle: degradation and mineralization of water containing organic pollutant: case study of Butachlor. Mater Res Bull 42(5):797–806CrossRefGoogle Scholar
  101. Mak SY, Chen DH (2004) Fast adsorption of methylene blue on polyacrylic acid-bound iron oxide magnetic nanoparticles. Dyes Pigments 61(1):93–98CrossRefGoogle Scholar
  102. Makarova OV, Rajh T, Thurnauer MC, Martin A, Kemme PA, Cropek D (2000) Surface modification of TiO2 nanoparticles for photochemical reduction of nitrobenzene. Environ Sci Technol 34(22):4797–4803CrossRefGoogle Scholar
  103. Mallikarjuna K, Narasimha G, Dillip GR, Praveen B, Shreedhar B, Lakshmi CS, Raju BDP (2011) Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig J Nanomater Biostruct 6(1):181–186Google Scholar
  104. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69(5):485–492PubMedCrossRefPubMedCentralGoogle Scholar
  105. Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 7:9275–9280Google Scholar
  106. Mohanraj VJ, Chen Y (2006) Nanoparticles-a review. Trop J Pharm Res 5(1):561–573Google Scholar
  107. Monica RC, Cremonini R (2009) Nanoparticles and higher plants. Caryologia 62(2):161–165CrossRefGoogle Scholar
  108. Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011(546074):1–8CrossRefGoogle Scholar
  109. Mubarak AD, Sasikala M, Gunasekaman M, Thajaddin N (2011) Biosynthesis and characterization of silver nanoparticles using marine cyanobacterium, Oscillatoria willei NTDM01. Dig J Nanomater Biostruct 6:385–390Google Scholar
  110. Murugadoss G, Rajamannan B, Madhusudhanan U (2009) Synthesis and characterization of water-soluble ZnS: Mn2+ nanocrystal. Chem Lett 6:197–201Google Scholar
  111. Murugesan K, Bokare V, Jeon JR, Kim EJ, Kim JH, Chang YS (2011) Effect of Fe/Pd bimetallic nanoparticles on Sphingomonas sp. PH-07 and a nano-bio hybrid process for triclosan degradation. Bioresour Technol 102:6019–6025PubMedCrossRefPubMedCentralGoogle Scholar
  112. Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst Growth Des 2(4):293–298CrossRefGoogle Scholar
  113. Nanda A, Saravanan M (2009) Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine 5(4):452–456PubMedCrossRefPubMedCentralGoogle Scholar
  114. Nanorem (2013) Nanotechnological remediation processes from lab scale to end user applications for the restoration of a clean environment. http://www.nanorem.eu/index.aspx
  115. Narayanan KB, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mater Lett 62(30):4588–4590CrossRefGoogle Scholar
  116. Ngomsik AF, Bee A, Siaugue JM, Cabuil V, Cote G (2006) Nickel adsorption by magnetic alginate microcapsules containing an extractant. Water Res 40(9):1848–1856PubMedCrossRefPubMedCentralGoogle Scholar
  117. Nithya R, Ragunathan R (2009) Synthesis of silver nanoparticle using Pleurotus sajor caju and its antimicrobial study. Dig J Nanomater Biostruct 4(4):623–629Google Scholar
  118. Paek SM, Jung H, Lee YJ, Park M, Hwang SJ, Choy JH (2006) Exfoliation and reassembling route to mesoporous titania nanohybrids. Chem Mater 18(5):1134–1140CrossRefGoogle Scholar
  119. Paknikar KM, Nagpal V, Pethkar AV, Rajwade JM (2005) Degradation of lindane from aqueous solutions using iron sulfide nanoparticles stabilized by biopolymers. Sci Technol Adv Mater 6(3–4):370–374CrossRefGoogle Scholar
  120. Parashar V, Parashar R, Sharma B, Pandey AC (2009) Parthenium leaf extract mediated synthesis of silver nanoparticles: a novel approach towards weed utilization. Dig J Nanomater Biostruct 4(1):45–50Google Scholar
  121. Parida UK, Bindhani BK, Nayak P (2011) Green synthesis and characterization of gold nanoparticles using onion (Allium cepa) extract. World J Nano Sci Eng 1:93–98CrossRefGoogle Scholar
  122. Pavani KV, Swati T, Snehika V, Sravya K, Sirisha M (2012) Phytofabrication of lead nanoparticles using grape skin extract. Int J Eng Sci Technol 4(7):3376–3380Google Scholar
  123. Peng X, Li Y, Luan Z, Di Z, Wang H, Tian B, Jia Z (2003) Adsorption of 1, 2-dichlorobenzene from water to carbon nanotubes. Chem Phys Lett 376(1–2):154–158CrossRefGoogle Scholar
  124. Peng T, Zhao D, Dai K, Shi W, Hirao K (2005) Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J Phys Chem B 109(11):4947–4952PubMedCrossRefPubMedCentralGoogle Scholar
  125. Petla RK, Vivekanandhan S, Misra M, Mohanty AK, Satyanarayana N (2012) Soybean (Glycine max) leaf extract based green synthesis of palladium nanoparticles. J Biomater Nanobiotechnol 3(1):14–19CrossRefGoogle Scholar
  126. Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73(2):374–381PubMedCrossRefPubMedCentralGoogle Scholar
  127. Philip D (2010) Green synthesis of gold and silver nanoparticles using Hibiscus rosa sinensis. Physica 42(5):1417–1424CrossRefGoogle Scholar
  128. Phumying S, Labuayai S, Thomas C, Amornkitbamrung V, Swatsitang E, Maensiri S (2013) Aloe vera plant-extracted solution hydrothermal synthesis and magnetic properties of magnetite (Fe3O4) nanoparticles. Appl Phys A Mater Sci Process 111(4):1187–1193CrossRefGoogle Scholar
  129. Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569CrossRefGoogle Scholar
  130. Popescu M, Alin V, Lőrinczi A (2010) Biogenic production of nanoparticles. Dig J Nanomater Biostruct 5(4):1035–1040Google Scholar
  131. Priya MM, Selvi BK, Paul JA (2011) Green synthesis of silver nanoparticles from the leaf extracts of Euphorbia hirta and Nerium indicum. Dig J Nanomater Biostruct 6(2):869–877Google Scholar
  132. Pugazhenthiran N, Anandan S, Kathiravan G, Prakash NKU, Crawford S, Ashokkumar M (2009) Microbial synthesis of silver nanoparticles by Bacillus sp. J Nanopart Res 11(7):1811–1815CrossRefGoogle Scholar
  133. Rao C, Biswas K (2009) Characterization of nanomaterials by physical methods. Annu Rev Anal Chem 2:435–462CrossRefGoogle Scholar
  134. Rathore KS, Patidar D, Janu Y, Saxena NS, Sharma K, Sharma TP (2008) Structural and optical characterization of chemically synthesized ZnS nanoparticles. Chem Lett 5(6):105–110Google Scholar
  135. Raut Rajesh W, Lakkakula Jaya R, Kolekar Niranjan S, Mendhulkar Vijay D, Kashid Sahebrao B (2009) Phytosynthesis of silver nanoparticle using Gliricidia sepium (Jacq.). Curr Nanosci 5(1):117–122CrossRefGoogle Scholar
  136. Raut RW, Kolekar NS, Lakkakula JR, Mendhulkar VD, Kashid SB (2010) Extracellular synthesis of silver nanoparticles using dried leaves of Pongamia pinnata (L) pierre. Nano-Micro Lett 2(2):106–113CrossRefGoogle Scholar
  137. Reddy KR (2010) Nanotechnology for site remediation: dehalogenation of organic pollutants in soils and groundwater by nanoscale iron particles. In: Proceedings of the 6th international congress on environmental geotecnics, vol 1. India Habitat Centre, New Delhi, pp 163–180Google Scholar
  138. Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70Google Scholar
  139. Sakulchaicharoen N, O'Carroll DM, Herrera JE (2010) Enhanced stability and dechlorination activity of pre-synthesis stabilized nanoscale Fe/Pd particles. J Contam Hydrol 118:117–127PubMedCrossRefGoogle Scholar
  140. Samim M, Ahmed FJ, Abdin MZ, Naqzi S (2011) Dig J Nanomater Biostruct 6:549–556Google Scholar
  141. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100(1):501–504PubMedCrossRefPubMedCentralGoogle Scholar
  142. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85(2):162–170Google Scholar
  143. Sathish KM, Sneha K, Kwak IS, Mao J, Tripathy SJ, Yun YS (2009) Phyto-crystallization of palladium through reduction process using Cinnamom zeylanicum bark extract. J Hazard Mater 171(1–3):400–404Google Scholar
  144. Sathyavathi R, Krishna BM, Rao VS, Saritha R, Rao N (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3(1):138–143CrossRefGoogle Scholar
  145. Say R, Birlik E, Denizli A, Ersöz A (2006) Removal of heavy metal ions by dithiocarbamate-anchored polymer/organosmectite composites. Appl Clay Sci 31(3–4):298–305CrossRefGoogle Scholar
  146. Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel–iron nanoparticles. Chem Mater 14:5140–5147CrossRefGoogle Scholar
  147. Selvi KV, Sivakumar T (2012) Isolation and characterization of silver nanoparticles from Fusarium oxysporum. Int J Curr Microbiol App Sci 1(1):56–62Google Scholar
  148. Seshadri S, Saranya K, Kowshik M (2011) Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnol Prog 27(5):1464–1469PubMedCrossRefPubMedCentralGoogle Scholar
  149. Shahi SK, Patra M (2003) Microbially synthesized bioactive nanoparticles and their formulation active against human pathogenic fungi. Rev Adv Mater Sci 5:501–509Google Scholar
  150. Shankar SS, Ahmad A, Pasricha R, Sastry M (2003a) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13(7):1822–1826CrossRefGoogle Scholar
  151. Shankar SS, Ahmad A, Sastry M (2003b) Geranium leaf assisted biosynthesis of silver nanoparticles. Biotechnol Prog 19(6):1627–1631PubMedCrossRefPubMedCentralGoogle Scholar
  152. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275(2):496–502PubMedCrossRefPubMedCentralGoogle Scholar
  153. Sharma R, Chandra BP, Bisen DP (2009) Thermoluminescence and optical absorption spectra of ZnS:Mn nanoparticles. Chem Lett 6(6):251–255Google Scholar
  154. Shekhawat GS, Arya V (2009) Biological synthesis of Ag nanoparticles through in vitro cultures of Brassica juncea C. zern. Adv Mater Res 67:295–299CrossRefGoogle Scholar
  155. Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of -HCH contaminated soil. J Hazard Mater 35:258–259Google Scholar
  156. Sintubin L, De Windt W, Dick J, Mast J, Vander HD, Verstraete W, Boon N (2009) Lactic acid bacteria as reducing and capping agent for the fast and efficient production of silver nanoparticles. Appl Microbiol Biotechnol 84(4):741–749PubMedCrossRefPubMedCentralGoogle Scholar
  157. Smitha SL, Philip D, Gopchandran KG (2009) Green synthesis of gold nanoparticles using Cinnamomum zeylanicum leaf broth. Spectrochim Acta A 74(3):735–739CrossRefGoogle Scholar
  158. Song JY, Kim BS (2008) Biological synthesis of bimetallic Au/Ag nanoparticles using Persimmon (Diopyros kaki) leaf extract. Korean J Chem Eng 25(4):808–811CrossRefGoogle Scholar
  159. Song JY, Jang HK, Kim BS (2009) Biological synthesis of gold nanoparticles using Magnolia kobus and Diopyros kaki leaf extracts. Process Biochem 44(10):1133–1138CrossRefGoogle Scholar
  160. Song JY, Kwon EY, Kim BS (2010) Biological synthesis of platinum nanoparticles using Diopyros kaki leaf extract. Bioprocess Biosyst Eng 33:159–164PubMedCrossRefPubMedCentralGoogle Scholar
  161. Soundarrajan C, Sankari A, Dhandapani P, Maruthamuthu S, Ravichandran S, Sozhan G, Palaniswamy N (2012) Rapid biological synthesis of platinum nanoparticles using Ocimum sanctum for water electrolysis applications. Bioprocess Biosyst Eng 35(5):827–833PubMedCrossRefPubMedCentralGoogle Scholar
  162. Stathatos E, Tsiourvas D, Lianos P (1999) Titanium dioxide films made from reverse micelles and their use for the photocatalytic degradation of adsorbed dyes. Colloids Surf A Physicochem Eng Asp 149(1–3):49–56CrossRefGoogle Scholar
  163. Sunkar S, Nachiyar CV (2012) Microbial synthesis and characterization of silver nanoparticles using the endophytic bacterium Bacillus cereus: a novel source in the benign synthesis. Glob J Med Res 12:43–50Google Scholar
  164. Sweeney RY, Mao C, Gao X, Burt JL, Belcher AM, Georgiou G, Iverson BL (2004) Bacterial biosynthesis of cadmium sulfide nanocrystals. Chem Biol 11(11):1553–1559PubMedCrossRefPubMedCentralGoogle Scholar
  165. Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16(10):1977–1983CrossRefGoogle Scholar
  166. Thakkar KN, Mhatre SS, Parikh RY (2010) Biological synthesis of metallic nanoparticles. Nanomedicine 6(2):257–262PubMedCrossRefPubMedCentralGoogle Scholar
  167. Thirumurugan A, Jiflin GJ, Rajagomathi G, Tomy NA, Ramachandran S, Jaiganesh R (2010) Biotechnological synthesis of gold nanoparticles of Azadirachta indica leaf extract. Int J Biol Technol 1:75–77Google Scholar
  168. Thome A, Reddy KR, Reginatto C, Cecchin I (2015) Review of nanotechnology for soil and groundwater remediation: Brazilian perspectives. Water Air Soil Pollut 226:1–20CrossRefGoogle Scholar
  169. Tosco T, Papini MP, Viggi CC, Sethi R (2014) Nanoscale zerovalent iron particles for groundwater remediation: a review. J Clean Prod 1:10–21CrossRefGoogle Scholar
  170. Tratnyek PG, Salter-Blanc A, Nurmi J, Amonette JE, Liu J, Wang CM, Dohnalkova A, Baer DR (2011) Reactivity of zerovalent metals in aquatic media: effects of organic surface coatings, ACS. Symposium series. Am Chem Soc 1071:381–406Google Scholar
  171. Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nano Res 12(1):237–246CrossRefGoogle Scholar
  172. Urbano FJ, Marinas JM (2001) Hydrogenolysis of organohalogen compounds over palladium supported catalysts. J Mol Cat A Chem 173(1–2):329–345CrossRefGoogle Scholar
  173. Vankar PS, Bajpai D (2010) Preparation of gold nanoparticles from Mirabilis jalapa flowers. Ind J Biochem Biophys 47:157–160Google Scholar
  174. Verma A, Joshi P, Arya A (2013) Synthesis of plant-mediated silver nanoparticles using plant extract of Sonchus asper. Int J Nanotechnol Appl 3(4):1–18Google Scholar
  175. Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007a) Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf B: Biointerfaces 53(1):55–59CrossRefGoogle Scholar
  176. Vigneshwaran N, Ashtaputre NM, Varadarajan PV, Nachane RP, Paralikar KM, Balasubramanya RH (2007b) Biological synthesis of silver nanoparticles using the fungus Aspergillus flavus. Mater Lett 61(6):1413–1418CrossRefGoogle Scholar
  177. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31(7):2154–2156CrossRefGoogle Scholar
  178. Wang H, Miao JJ, Zhu JM, Ma HM, Zhu JJ, Chen HY (2004) Mesoporous spherical aggregates of anatase nanocrystals with wormhole-like framework structures: their chemical fabrication, characterization, and photocatalytic performance. Langmuir 20(26):11738–11747PubMedCrossRefPubMedCentralGoogle Scholar
  179. Wang J, Ma T, Zhang Z, Zhang X, Jiang Y, Dong D, Li Y (2006) Investigation on the sonocatalytic degradation of parathion in the presence of nanometer rutile titanium dioxide (TiO2) catalyst. J Hazard Mater 137(2):972–980PubMedCrossRefPubMedCentralGoogle Scholar
  180. Wang WN, Tarafdar JC, Biswas P (2013) Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J Nanopart Res 15:1–13Google Scholar
  181. Wei YT, Wu SC, Chou CM, Che CH, Tsai SM, Lien HL (2010) Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: a field case study. Water Res 44:131–140PubMedCrossRefPubMedCentralGoogle Scholar
  182. Wu CH, Chang HW, Chern JM (2006) Basic dye decomposition kinetics in a photocatalytic slurry reactor. J Hazard Mater 137(1):336–343PubMedCrossRefPubMedCentralGoogle Scholar
  183. Xie Y, Fang Z, Cheng W, Tsang PE, Zhao D (2014) Remediation of polybrominated diphenyl ethers in soil using Ni/Fe bimetallic nanoparticles: influencing factors, kinetics and mechanism. Sci Total Environ 485:363–370PubMedCrossRefPubMedCentralGoogle Scholar
  184. Xin Y, Qingbiao L, Huixuan W, Jiale H, Liqin L, Wenta W, Daohua S, Yuanbo S, James O, Luwei H, Yuanpeng W, Ning H, Lishan J (2010) Green synthesis of palladium nanoparticles using broth of Cinnamomum camphora leaf. J Nanopart Res 12(5):1589–1598CrossRefGoogle Scholar
  185. Xiong Z, Zhao D, Pan G (2007) Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Res 41(15):3497–3350PubMedCrossRefPubMedCentralGoogle Scholar
  186. Xu Y, Zhao D (2005) Removal of copper from contaminated soil by use of poly (amidoamine) dendrimers. Environ Sci Technol 39(7):2369–2375PubMedCrossRefPubMedCentralGoogle Scholar
  187. Yang RT (2003) Adsorbents: fundamentals and applications. Wiley, HobokenCrossRefGoogle Scholar
  188. Yuan G, Wu L (2007) Allophane nanoclay for the removal of phosphorus in water and wastewater. Sci Technol Adv Mater 8(1–2):60–62CrossRefGoogle Scholar
  189. Zhang H, Li Q, Lu Y, Sun D, Lin X, Deng X, Zheng S (2005) Biosorption and bioreduction of diamine silver complex by Corynebacterium. J Chem Technol Biotechnol 80(3):285–290CrossRefGoogle Scholar
  190. Zhang M, Wang Y, Zhao D, Pan G (2010) Immobilization of arsenic in soils by stabilized nanoscale zero valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles. Chin Sci Bull 55(4–5):365–372CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bhupendra Koul
    • 1
  • Pooja Taak
    • 1
  1. 1.School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia

Personalised recommendations