Advertisement

Soil Remediation Through Algae, Plants and Animals

  • Bhupendra Koul
  • Pooja Taak
Chapter

Abstract

There is an expanding enthusiasm for utilizing algal species for remediation of organic (hydrocarbons) and inorganic pollutants (heavy metals) in soils. Several algal species have been isolated which have potential to remediate the polluted soils and wastewaters. Phytoremediation mechanisms, although not quick but, have the potential to restore the polluted soils. This strategy is centred on the mutual act of plants and the microbial communities related with them to remove, degrade, transform or immobilize the noxious contaminants present in sediments, soils, surface water and ground water. Even though various chemical, physical, and biological methods have been developed and suggested but, phytoremediation is the ideal, innovative, as well as the safest method for removing toxic metals without any noticeable side effects. Some lower animals take in heavy metals from soil and further degrade, remove or lower their toxicity. It has also been reported that earthworm has significant potential to augment the stable fraction and to retard mobile fraction of heavy metals. This chapter discusses the advantanges and the concerns related to soil remediation mediated through aglae, plants and animals.

Keywords

Heavy metals Phytoremediation Hyperaccumulator Rhizofiltration Phytotransformation Phytostabilization 

References

  1. Abdallah MAM (2012) Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ Technol 33(14):1609–1614PubMedCrossRefGoogle Scholar
  2. Adamia G, Ghoghoberidze M, Graves D, Khatisashvili G, Kvesitadze G, Lomidze E (2006) Absorption distribution and transformation of TNT in higher plants. Ecotoxicol Environ Saf 64:136–145PubMedCrossRefGoogle Scholar
  3. Adesodun JK, Atayese MO, Agbaje TA, Osadiaye BA, Mafe OF, Soretire AA (2010) Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates. Water Air Soil Pollut 207:195–201CrossRefGoogle Scholar
  4. Adhiya J, Cai X, Sayre RT, Traina SJ (2002) Binding of aqueous cadmium by the lyophilized biomass of Chlamydomonas reinhardtii. Colloids Surf A 210(1):1–11CrossRefGoogle Scholar
  5. Agostini E, Coniglio MS, Milrad SR, Tigier HA, Giulietti AM (2003) Phytoremediation of 2, 4 dichlorophenol by Brassica napus hairy root cultures. Biotechnol Appl Biochem 37:139–144PubMedCrossRefGoogle Scholar
  6. Agrawal N, Shahi SK (2017) Degradation of polycyclic aromatic hydrocarbon (pyrene) using novel fungal strain Coriolopsis byrsina strain APC5. Int Biodeter Biodegrad 122:69–81CrossRefGoogle Scholar
  7. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26(1):1–20CrossRefGoogle Scholar
  8. Ahner BA, Wei L, Oleson JR, Ogura N (2002) Glutathione and other low molecular weight thiols in marine phytoplankton under metal stress. Mar Ecol Prog Ser 232:93–103CrossRefGoogle Scholar
  9. Akhtar N, Iqbal M, Zafar SI, Iqbal J (2008) Biosorption characteristics of unicellular green alga Chlorella sorokiniana immobilized in loofa sponge for removal of Cr(III). J Environ Sci China 20(2):231–239PubMedCrossRefGoogle Scholar
  10. Akpor OB, Muchie M (2010) Remediation of heavy metals in drinking water and wastewater treatment systems: processes and applications. Int J Phys Sci 5(12):1807–1817Google Scholar
  11. Aksu Z (2001) Equilibrium and kinetic modelling of cadmium(II) biosorption by C. vulgaris in a batch system: effect of temperature. Sep Purif Technol 21(3):285–229CrossRefGoogle Scholar
  12. Aksu Z, D€onmez G (2006) Binary biosorption of cadmium(II) and nickel(II) onto dried Chlorella vulgaris: co-ion effect on mono-component isotherm parameters. Process Biochem 41(4):860–868CrossRefGoogle Scholar
  13. Al Chami Z, Amer N, AlBitar L, Cavoski I (2015) Potential use of Sorghum bicolor and Carthamus tinctorius in phytoremediation of nickel, lead and zinc. Int J Environ Sci Technol 12(12):3957–3970CrossRefGoogle Scholar
  14. Alavi N, Parseh I, Ahmadi M, Jafarzadeh N, Yari AR, Chehrazi M, Chorom M (2016) Phytoremediation of total petroleum hydrocarbons (TPHs) from highly saline and clay soil using Sorghum halepenes (L.) Pers. and Aeluropus littoralis (Guna) Parl. Soil Sed Contam 26:127–140CrossRefGoogle Scholar
  15. Al-Homaidan AA, Al-Ghanayem AA, Alkhalifa AH (2011) Green algae as bioindicators of heavy metal pollution in Wadi Hanifah Stream, Riyadh, Saudi Arabia. Int J Water Resour Arid Environ 1(1):10–15Google Scholar
  16. Ali MB, Vajpayee P, Tripathi RD, Rai UN, Singh SN, Singh SP (2003) Phytoremediation of lead, nickel, and copper by Salix acmophylla Boiss., role of antioxidant enzymes and antioxidant substances. Bull Environ Contam Toxicol 70(3):462–469PubMedCrossRefGoogle Scholar
  17. Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals-concepts and applications. Chemosphere 91(7):869–881PubMedCrossRefGoogle Scholar
  18. Al-Rub FA, El-Naas M, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Proc Biochem 39(11):1767–1773CrossRefGoogle Scholar
  19. Anderson CWN, Brooks RR, Chiarucci A, LaCoste CJ, Leblancc M, Robinson BH, Simcocke R, Stewart RB (1999) Phytomining for nickel, thallium and gold. J Geochem Explor 67:407–415CrossRefGoogle Scholar
  20. Araujo BS-d, Charlwood BV, Pletsch M (2002) Tolerance and metabolism of phenol and chloro derivatives by hairy root cultures of Daucus carota L. Environ Pollut 117(2):329–335PubMedCrossRefGoogle Scholar
  21. Arazi T, Sunkar R, Kaplan B, Fromm HA (1999) Tobacco plasma membrane calmodulin binding transporter confers Ni+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182PubMedCrossRefGoogle Scholar
  22. Arıca MY, Tüzün I, Yalçın E, Ince O, Bayramoglu G (2005) Utilisation of native, heat and acid-treated microalgae Chlamydomonas reinhardtii preparations for biosorption of Cr(VI) ions. Process Biochem 40(7):2351–2358CrossRefGoogle Scholar
  23. Arun A, Raja PP, Arthi R, Ananthi M, Kumar KS, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by Basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151:132–142PubMedCrossRefGoogle Scholar
  24. Atagana HI, Haynes RJ, Wallis FM (2006) Fungal bioremediation of creosote-contaminated soil: a laboratory scale bioremediation study using indigenous soil fungi. Water Air Soil Pollut 172:201–219CrossRefGoogle Scholar
  25. Atma W, Larouci M, Meddah B, Benabdeli K, Sonnet P (2017) Evaluation of the phytoremediation potential of Arundo donax L. for nickel-contaminated soil. Int J Phytoremed 19(4):377–386CrossRefGoogle Scholar
  26. Balestrazzi A, Botti S, Zelasco S, Biondi S, Franchin C, Calligari Carbonera D (2009) Expression of the PsMTA1 gene in white poplar engineered with the MAT system is associated with heavy metal tolerance and protection against 8-hydroxy-2′-deoxyguanosine mediated-DNA damage. Plant Cell Rep 28(8):1179–1192PubMedCrossRefGoogle Scholar
  27. Balliana AG, Moura BB, Inckot RC, Bona C (2017) Development of Canavalia ensiformis in soil contaminated with diesel oil. Environ Sci Pollut Res 24:979–986CrossRefGoogle Scholar
  28. Bani A, Echevarria G, Sulçe S, Morel JL (2015) Improving the agronomy of Alyssum murale for extensive phytomining: a five-year field study. Int J Phytorem 17:117–127CrossRefGoogle Scholar
  29. Bañuelos G, Terry N, LeDuc DL, Pilon-Smits EAH, Mackey B (2005) Field trial of transgenic Indian mustard plants shows enhanced phytoremediation of selenium- contaminated sediment. Environ Sci Technol 39:1771–1777PubMedCrossRefGoogle Scholar
  30. Bañuelos G, Leduc DL, Pilon-Smits EAH, Terry N (2007) Transgenic Indian mustard overexpressing selenocysteine lyase or selenocysteine methyltransferase exhibit enhanced potential for selenium phytoremediation under field conditions. Environ Sci Technol 41(2):599–605PubMedCrossRefGoogle Scholar
  31. Basumatary B, Bordoloi S, Sarma HP (2012) Crude oil-contaminated soil phytoremediation by using Cyperus brevifolius (Rottb.) Hassk. Water Air Soil Pollut 223:3373–3383CrossRefGoogle Scholar
  32. Beharti A (2014) Phytoremediation: as a degradation of heavy metals. Int J Eng Tech Res 2(5):137–139Google Scholar
  33. Ben-Chekroun K, Baghour M (2013) The role of algae in phytoremediation of heavy metals: a review. J Mater Environ Sci 4(6):873–880Google Scholar
  34. Bhadra R, Wayment DG, Williams RK, Barman SN, Stone MB, Hughes JB (2001) Studies on plant mediated fate of the explosives RDX and HMX. Chemosphere 44(5):1259–1264PubMedCrossRefGoogle Scholar
  35. Bhattacharya T, Banerjee DK, Gopal B (2006) Heavy metal uptake by Scirpus littoralis schrad. from fly ash dosed and metal spiked soils. Environ Monit Assess 121(1–3):363–380PubMedCrossRefGoogle Scholar
  36. Bhatti HN, Kalsoom U, Habib A (2012) Decolorization of direct dyes using peroxidase from Raphanus sativus (F04 SL). J Chem Soc Pak 34(2):257–262Google Scholar
  37. Bibi A, Farooq U, Naz S, Khan A, Khan S, Sarwar R, Mahmood Q, Alam A, Mirza N (2016) Phytoextraction of HG by parsley (Petroselinum crispum) and its growth responses. Int J Phytoremed 18(4):354–357CrossRefGoogle Scholar
  38. Bishnoi NR, Kumar R, Kumar S, Rani S (2007) Biosorption of Cr(III) from aqueous solution using algal biomass Spirogyra spp. J Hazard Mater 145(1–2):142–147PubMedCrossRefGoogle Scholar
  39. Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131(2):463–471PubMedPubMedCentralCrossRefGoogle Scholar
  40. Bokare V, Murugesan K, Kim YM, Jeon JR, Kim EJ, Chang YS (2010) Degradation of triclosan by an integrated nano-bio redox process. Bioresour Technol 101:6354–6360PubMedCrossRefGoogle Scholar
  41. Bokare V, Murugesan K, Kim JH, Kim EJ, Chang YS (2012) Integrated hybrid treatment for the remediation of 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin. Sci Total Environ 435:563–566PubMedCrossRefGoogle Scholar
  42. Boopathy R, Kulpa CF (1994) Biotransformation of 2, 4, 6-trinitrotoluene (TNT) by a Methanococcus sp. (strain B) isolated from a lake sediment. Can J Microbiol 40:273–278PubMedCrossRefGoogle Scholar
  43. Brandt R, Merkl N, Schultze-Kraft R, Infante C, Broll G (2006) Potential of Vetiver (Vetiveria zizanoides L. Nash) for phytoremediation of hydrocarbon contaminated soils in Venezuela. Int J Phytoremed 8:273–284CrossRefGoogle Scholar
  44. Briceno G, Fuentes MS, Palma G, Jorquera MA, Amoroso MJ, Diez MC (2012) Chlorpyrifos biodegradation and 3, 5, 6-trichloro-2-pyridinol production by actinobacteria isolated from soil. Int Biodeter Biodegrad 73:1–7CrossRefGoogle Scholar
  45. Brichkova GG, Shishlova AM, Maneshina TV, Kartel NA (2007) Tolerance to aluminum in genetically modified tobacco plants. Cytol Genet 41:151–155CrossRefGoogle Scholar
  46. Cáceres T, Megharaj M, Naidu R (2008) Toxicity and transformation of fenamiphos and its metabolites by two micro algae Pseudokirchneriella subcapitata and Chlorococcum sp. Sci Total Environ 398:53–59PubMedCrossRefGoogle Scholar
  47. Callender KL, Roy S, Khasa DP, Whyte LG, Greer CW (2016) Actinorhizal alder phytostabilization alters microbial community dynamics in gold mine waste rock from Northern Quebec: a greenhouse study. PloS One 11(2):0150181CrossRefGoogle Scholar
  48. Cambroll EJ, Mateos-Naranjo E, Redondo-Gomez S, Luque T, Figueroa ME (2011) The role of two Spartina species in phytostabilization and bioaccumulation of Co, Cr, and Ni in the Tinto–Odiel estuary (SW Spain). Hydrobiologia 671(1):95–103CrossRefGoogle Scholar
  49. Castro S, Davis LC, Erickson LE (2003) Phytotransformation of benzotriazoles. Int J Phytoremed 5:245–265CrossRefGoogle Scholar
  50. Cerniglia CE, Gibson DT, Van Baalen C (1979) Algal oxidation of aromatic hydrocarbons: formation of 1-naphthol from naphthalene by Agmenellum quadruplicatum, strain PR-6. Biochem Biophys Res Commun 88(1):50–58PubMedCrossRefGoogle Scholar
  51. Chandra R, Yadav S (2011) Phytoremediation of CD, CR, CU, MN, FE, NI, PB and ZN from Aqueous Solution Using Phragmites Cummunis, Typha Angustifolia and Cyperus Esculentus. Int J Phytoremed 13:580–591CrossRefGoogle Scholar
  52. Chandra R, Bharagava RN, Yadav S, Mohan D (2009) Accumulation and distribution of toxic metals in wheat (Triticum aestivum L.) and Indian mustard (Brassica campestris L.) irrigated with distillery and tannery effluents. J Hazard Mater 162(2):1514–1521PubMedCrossRefGoogle Scholar
  53. Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (2000) In: Terry N, Banelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 129–158Google Scholar
  54. Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36(5):1429–1443PubMedCrossRefGoogle Scholar
  55. Chardot V, Massoura ST, Echevarria G, Reeves RD, Morel JL (2005) Phytoextraction Potential of the Nickel Hyperaccumulators Leptoplax emarginata and Bornmuellera tymphaea. Int J Phytoremed 7:323–335CrossRefGoogle Scholar
  56. Chen Y, Xu W, Shen H, Yan H, Xu W, He Z, Ma M (2013) Engineering arsenic tolerance and hyperaccumulation in plants for phytoremediation by a pvacr3 transgenic approach. Environ Sci Technol 47:9355–9362PubMedCrossRefGoogle Scholar
  57. Chen J, Yang L, Gu J, Bai X, Ren Y, Fan T, Cao S (2015) MAN3 gene regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis thaliana. New Phytol 205(2):570–582PubMedCrossRefGoogle Scholar
  58. Chen J, Yang L, Yan X, Liu Y, Wang R, Fan T, Cao S (2016a) Zinc-finger transcription factor zat6 positively regulates cadmium tolerance through the glutathione-dependent pathway in Arabidopsis. Plant Physiol 171(1):707–719PubMedPubMedCentralCrossRefGoogle Scholar
  59. Chen F, Tan M, Ma J, Zhang S, Li G, Qu J (2016b) Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: a greenhouse study. J Hazard Mater 302:250–261PubMedCrossRefGoogle Scholar
  60. Chen X, Liu X, Zhang X, Cao L, Hu X (2017) Phytoremediation effect of Scirpus triqueter inoculated plant-growth-promoting bacteria (PGPB) on different fractions of pyrene and Ni in co-contaminated soils. J Hazard Mater 325:319–326PubMedCrossRefGoogle Scholar
  61. Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390PubMedCrossRefGoogle Scholar
  62. Cho-Ruk K, Kurukote J, Supprung P, Vetayasuporn S (2006) Perennial plants in the phytoremediation of lead-contaminated soils. Biotechnol 5(1):1–4CrossRefGoogle Scholar
  63. Chung SY, Maeda M, Song E, Horikoshij K, Kudo T (1994) A Gram-positive polychlorinated biphenyl-degrading bacterium, Rhodococcus erythropolis strain TA421, isolated from a termite ecosystem. Biosci Biotechnol Biochem 58:2111–2113CrossRefGoogle Scholar
  64. Ciura J, Poniedziałek J, Sękara A, Jędrszczyk E (2005) The possibility of using crops as metal phytoremediants. Pol J Environ Stud 14(1):17–22Google Scholar
  65. Cobbett C, Goldsbrough P (2002) Phytochelatin and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182PubMedCrossRefGoogle Scholar
  66. Cullaj A, Hasko I, McBow F, Kongoli (2004) Investigation of the potential of several plants for phytoremediation of nickel contaminated soils and for nickel phytoextraction. Eur J Miner Process Environ Prot 4(2):144–151Google Scholar
  67. Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol 29:207–212CrossRefGoogle Scholar
  68. Curie C, Alonso JM, LeJea M, Ecker JR, Briat JF (2000) Involvement of Nramp1 from Arabidopsis thaliana in iron transport. Biochem J 347:749–755PubMedPubMedCentralCrossRefGoogle Scholar
  69. Daghan H, Arslan M, Uygur V, Koleli N (2013) Transformation of tobacco with ScMTII gene-enhanced cadmium and zinc accumulation. Clean-Soil Air Water 41:503–509CrossRefGoogle Scholar
  70. Dai J, Balish R, Meagher RB, Merkle SA (2009) Development of transgenic hybrid sweetgum (Liquidambar styraciflua × L. formosana) expressing γ-glutamylcysteine synthetase or mercuric reductase for phytoremediation of mercury pollution. New Forests 38(1):35–52CrossRefGoogle Scholar
  71. Damaj M, Ahmad D (1996) Biodegradation of polychlorinated biphenyls by rhizobia: a novel finding. Biochem Biophys Res Commun 218:908–915PubMedCrossRefGoogle Scholar
  72. Dan TV, KrishnaRaj S, Saxena PK (2002) Cadmium and nickel uptake and accumulation in scented Geranium (Pelargonium sp. Frensham). Water Air Soil Pollut 137(1–4):355–364CrossRefGoogle Scholar
  73. Das N, Bhattacharya S, Maiti MK (2016) Enhanced cadmium accumulation and tolerance in transgenic tobacco overexpressing rice metal tolerance protein gene OsMTP1 is promising for phytoremediation. Plant Physiol Biochem 105:297–309PubMedCrossRefGoogle Scholar
  74. Davison J (2005) Risk mitigation of genetically modified bacteria and plants designed for bioremediation. J Ind Microbiol Biotechnol 32:639–650PubMedCrossRefGoogle Scholar
  75. de Godos I, Munoz R, Guieysse B (2012) Tetracycline removal during wastewater treatment in high-rate algal ponds. J Hazard Mater 229:446–449PubMedCrossRefGoogle Scholar
  76. de-Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation-a comprehensive evaluation. Appl Soil Ecol 61:171–189CrossRefGoogle Scholar
  77. dela Fuente JM, Ramirez-Rodriguez Y, Cabrera-Ponce JL, Herrera Estrella L (1997) Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568PubMedCrossRefGoogle Scholar
  78. Deng L, Su Y, Su H, Wang X, Zhu X (2006) Biosorption of copper (II) and lead (II) from aqueous solutions by nonliving green algae Cladophora fascicularis: equilibrium, kinetics and environmental effects. Adsorption 12(4):267–277CrossRefGoogle Scholar
  79. Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143(1–2):220–225PubMedCrossRefGoogle Scholar
  80. Desjardins D, Pitre FE, Nissim WG, Labrecque M (2016) Differential uptake of silver, copper and zinc suggests complementary species-specific phytoextraction potential. Int J Phytoremed 18(6):598–604CrossRefGoogle Scholar
  81. DeSouza MP, Pilon-Smits EAH, Terry N (2000) The physiology and biochemistry of selenium volatilization by plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, London, pp 171–188Google Scholar
  82. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and g-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145PubMedCrossRefGoogle Scholar
  83. Dhankher OP, Shasti NA, Rosen BP, Fuhrmann M, Meagher RB (2003) Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. New Phytol 159:431–441CrossRefGoogle Scholar
  84. Dhanwal P, Kumar A, Dudeja S, Chhokar V, Beniwal V (2017) Recent advances in phytoremediation technology. In: Advances in environmental biotechnology. Springer, Singapore, pp 227–241CrossRefGoogle Scholar
  85. Dheeba B, Sampathkumar P (2012) A comparative study on the phytoextraction of five common plants against chromium toxicity. Orient J Chem 28(2):867CrossRefGoogle Scholar
  86. Dheri GS, Brar MS, Malhi SS (2007) Comparative Phytoremediation of Chromium-Contaminated Soils by Fenugreek, Spinach, and Raya. Commun Soil Sci Plant Anal 38:1655–1672CrossRefGoogle Scholar
  87. Dhir B (2013) Phytoremediation: role of aquatic plants in environmental clean-up. Springer, New DelhiCrossRefGoogle Scholar
  88. Didierjean L, Gondet L, Perkins R, Lau SM, Schaller H, O'Keefe DP, Werck-Reichhart D (2002) Engineering herbicide metabolism in tobacco and Arabidopsis with CYP76B1, a cytochrome P450 enzyme from Jerusalem artichoke. Plant Physiol 130:179–189PubMedPubMedCentralCrossRefGoogle Scholar
  89. Diwan H, Ahmad A, Iqbal M (2010) Uptake-related parameters as indices of phytoremediation potential. Biologia 65(6):1004–1011CrossRefGoogle Scholar
  90. Dixit P, Singh S, Mukherjee PK, Eapen S (2008) Development of transgenic plants with cytochrome P450E1 gene and glutathione-S-transferase gene for degradation of organic pollutants. Abs J Biotechnol 136:S692–S693CrossRefGoogle Scholar
  91. Dixit P, Mukherjee PK, Sherkhane PD, Kale SP, Eapen S (2011) Enhanced tolerance and remediation of anthracene by transgenic tobacco plants expressing a fungal glutathione transferase gene. J Hazard Mater 192(1):270–276PubMedGoogle Scholar
  92. Donmez G, Aksu Z (2002) Removal of chromium(VI) from saline wastewaters by Dunaliella species. Process Biochem 38(5):751–762CrossRefGoogle Scholar
  93. Doty SL, Shang TQ, Wilson AM, Tangen J, Westergreen AD, Newman LA (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants containing mammalian cytochrome P450 2E1. Proc Natl Acad Sci USA 97:6287–6291PubMedCrossRefGoogle Scholar
  94. Doty SL, Shang TQ, Wilson AM, Moore AL, Newman LA, Strand SE (2003) Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene by the tropical leguminous tree, Leuceana leucocephala. Water Res 37:441–449PubMedCrossRefGoogle Scholar
  95. Douchkov D, Gryczka C, Stephan UW, Hell R, Bäumlein H (2005) Ectopic expression of nicotianamine synthase genes results in improved iron accumulation and increased nickel tolerance in transgenic tobacco. Plant Cell Environ 28(3):365–374CrossRefGoogle Scholar
  96. Du ZY, Chen MX, Chen QF, Gu JD, Chye ML (2015) Expression of Arabidopsis acyl- CoA-binding proteins AtACBP1 and AtACBP4 confers Pb(II) accumulation in Brassica juncea roots. Plant Cell Environ 38:101–117PubMedCrossRefGoogle Scholar
  97. Dürešová Z, Šuňovská A, Horník M, Pipíška M, Gubišová M, Gubiš J, Hostin S (2014) Rhizofiltration potential of Arundo donax for cadmium and zinc removal from contaminated wastewater. Chem Pap 68(11):1452–1462CrossRefGoogle Scholar
  98. Eapen S, D’Souza SF (2005) Prospects of genetic engineering of plants for phytoremediation of toxic metals. Biotechnol Adv 23:97–114PubMedPubMedCentralCrossRefGoogle Scholar
  99. Eapen S, Singh S, D’Souza SF (2007) Advances in development of transgenic plants for remediation of xenobiotic pollutants. Biotechnol Adv 25:442–451CrossRefGoogle Scholar
  100. Eddy NO, Ekop AS (2007) Phytoremediation potentials of some Nigerian weeds. Asian J Chem 19(3):1825–1831Google Scholar
  101. Elias SH, Mohamed M, Nor-Anuar A, Muda K, Hassan MAHM, Othman MN, Chelliapan S (2014) Water hyacinth bioremediation for ceramic industry wastewater treatment-application of rhizofiltration system. J Sain Malay 43(9):1397–1403Google Scholar
  102. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B (2004) Production of S methyl selenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 4(1):1PubMedPubMedCentralCrossRefGoogle Scholar
  103. Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495PubMedCrossRefPubMedCentralGoogle Scholar
  104. El-Sikaily A, Nemr AE, Khaled A, Abdelwehab O (2007) Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. J Hazard Mater 148(1–2):216–228PubMedCrossRefPubMedCentralGoogle Scholar
  105. Escalante-Espinosa E, Gallegos-Martínez ME, Favela-Torres E, Gutiérrez-Rojas M (2005) Improvement of the hydrocarbon phytoremediation rate by Cyperus laxus Lam. inoculated with a microbial consortium in a model system. Chemosphere 59:405–413PubMedCrossRefPubMedCentralGoogle Scholar
  106. Escobar MP, Dussán J (2016) Phytoremediation potential of chromium and lead by Alnus acuminata subsp. acuminata. Environ Prog Sustain Energy 35:942–948CrossRefGoogle Scholar
  107. Eskander S, Saleh H (2017) Phytoremediation: an overview. In: Environmental science and engineering, Soil pollution and phytoremediation, vol 11, 1st edn. Studium Press LLC, pp 124–161Google Scholar
  108. Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein like gene Ps MTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications of Ps MTA function. Plant Mol Biol 20:1019–1028PubMedCrossRefPubMedCentralGoogle Scholar
  109. Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminium induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122(3):657–665PubMedPubMedCentralCrossRefGoogle Scholar
  110. Ferradji FZ, Mnif S, Badis A, Rebbani S, Fodil D, Eddouaouda K, Sayadi S (2014) Naphthalene and crude oil degradation by biosurfactant producing Streptomyces spp. isolated from Mitidja plain soil (North of Algeria). Int Biodeter Biodegrad 86:300–308CrossRefGoogle Scholar
  111. Flocco CG, Lindblom SD, Smits EAHP (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremed 6:289–304CrossRefGoogle Scholar
  112. Forte J, Mutiti S (2017) Phytoremediation potential of Helianthus annuus and Hydrangea paniculata in copper and lead-contaminated soil. Water Air Soil Pollut 228(2):77CrossRefGoogle Scholar
  113. Frassinetti S, Setti L, Corti A, Farrinelli P, Montevecchi P, Vallini G (1998) Biodegradation of dibenzothiophene by a nodulating isolate of Rhizobium meliloti. Can J Microbiol 44:289–297PubMedCrossRefPubMedCentralGoogle Scholar
  114. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16(8):2176–2191PubMedPubMedCentralCrossRefGoogle Scholar
  115. French CE, Rosser SJ, Davies GJ, Nicklin S, Bruce NC (1999) Biodegradation of explosives by transgenic plants expressing pentaerythritol tetranitrate reductase. Nat Biotechnol 17:491–494PubMedCrossRefPubMedCentralGoogle Scholar
  116. Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles J, Rylott EL (2008) Detoxification of the explosive 2,4,6- trinitrotoluene in Arabidopsis: discovery of bifunctional Oand C-glucosyltransferases. Plant J 56:963–974PubMedCrossRefPubMedCentralGoogle Scholar
  117. Gao H, Zhang J, Lai H, Xue Q (2017) Degradation of asphaltenes by two Pseudomonas aeruginosa strains and their effects on physicochemical properties of crude oil. Int Biodeter Biodegrad 122:12–22CrossRefGoogle Scholar
  118. Gardea-Torresdey JL, Peralta-Videa JR, Montes M, dela Rosa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L., impact on plant growth and uptake of nutritional elements. Bioresour Technol 92:229–235PubMedCrossRefPubMedCentralGoogle Scholar
  119. Gardea-Torresdey JL, Rosa DL, Peralta-Videa G, Montes JRM, Cruz-Jimenez G, Cano-Aguilera I (2005) Differential uptake and transport of trivalent and hexavalent chromium by tumbleweed (Salsola kali). Arch Environ Contam Toxicol 48(2):225–232PubMedCrossRefPubMedCentralGoogle Scholar
  120. Garousi F, Kovács B, Andrási D, Veres S (2016) Selenium phytoaccumulation by sunflower plants under hydroponic conditions. Water Air Soil Pollut 227(10):382CrossRefGoogle Scholar
  121. Gattullo CE, Bährs H, Steinberg CEW, Loffredo E (2012) Removal of bisphenol A by the freshwater green alga Monoraphidium braunii and the role of natural organic matter. Sci Total Environ 416:501–506PubMedCrossRefPubMedCentralGoogle Scholar
  122. Gautam M, Agrawal M (2017) Phytoremediation of metals using vetiver (Chrysopogon zizanioides (L.) Roberty) grown under different levels of red mud in sludge amended soil. J Geochem Explor 182:218–227CrossRefGoogle Scholar
  123. Gavrilescu M (2010) Environmental biotechnology: achievements, opportunities and challenges. Dynamic Biochem Process Biotech Mol Biol 4:1–36Google Scholar
  124. Gerhardt KE, MacNeill GJ, Gerwing PD, Greenberg BM (2017) Phytoremediation of salt-impacted soils and use of plant growth-promoting rhizobacteria (PGPR) to enhance phytoremediation. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 19–51CrossRefGoogle Scholar
  125. Ghaderian SM, Mohtadi A, Rahiminejad MR, Baker AJM (2007) Nickel and other metal uptake and accumulation by species of Alyssum (Brassicaceae) from the ultramafics of. Iran Environ Pollut 145(1):293–298PubMedCrossRefGoogle Scholar
  126. Giordani C, Cecchi S, Zanchi C (2005) Phytoremediation of soil polluted by nickel using agricultural crops. J Environ Manag 36(5):675–681CrossRefGoogle Scholar
  127. Gisbert C, Ros R, De Haro A, Walker DJ, Bernal MP, Serrano R, Navarro-Aviñó J (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303(2):440–445PubMedCrossRefGoogle Scholar
  128. Giurco D, Cooper C (2012) Mining and sustainability: asking the right questions. Miner Eng 29:3–12CrossRefGoogle Scholar
  129. Goel A, Kumar G, Payne GF, Dube SK (1997) Plant cell biodegradation of a xenobiotic nitrate ester nitroglycerin. Nat Biotechnol 15:174–177PubMedCrossRefGoogle Scholar
  130. Gokhale SV, Jyoti KK, Lele SS (2008) Kinetic and equilibrium modeling of chromium (VI) biosorption on fresh and spent Spirulina platensis/Chlorella vulgaris biomass. Bioresour Technol 99(9):3600–3608PubMedCrossRefGoogle Scholar
  131. Gomes PI, Asaeda T (2013) Phytoremediation of heavy metals by calcifying macro-algae (Nitella pseudoflabellata), Implications of redox insensitive end products. Chemosphere 92(10):1328–1334PubMedCrossRefGoogle Scholar
  132. Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Res 7:173–180CrossRefGoogle Scholar
  133. Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron accumulation in rice seed by soya bean ferritin gene. Nat Biotechnol 17:282–286PubMedCrossRefGoogle Scholar
  134. Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and Zn. J Biotechnol 81:45–53PubMedCrossRefPubMedCentralGoogle Scholar
  135. Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci 86:6838–6842PubMedCrossRefPubMedCentralGoogle Scholar
  136. Grobelak A, Napora A (2015) The chemophytostabilisation process of heavy metal polluted soil. PloS one 10(6):0129538CrossRefGoogle Scholar
  137. Gu CS, Liu LQ, Zhao YH, Deng YM, Zhu XD, Huang SZ (2014) Overexpression of Iris lactea var. chinensis metallothionein llMT2a enhances cadmium tolerance in Arabidopsis thaliana. Ecotoxicol Environ Safety 105:22–28PubMedCrossRefPubMedCentralGoogle Scholar
  138. Gu CS, Liu LQ, Deng YM, Zhu XD, Huang SZ, Lu XQ (2015) The heterologous expression of the Iris lactea var. chinensis type 2 metallothionein IlMT2b gene enhances copper tolerance in Arabidopsis thaliana. Bull Environ Contam Toxicol 94(2):247–253PubMedCrossRefGoogle Scholar
  139. Gumuscu B, Tekinay T (2013) Effective biodegradation of 2, 4, 6-trinitrotoluene using a novel bacterial strain isolated from TNT-contaminated soil. Int Biodeter Biodegrad 85:35–41CrossRefGoogle Scholar
  140. Gupta VK, Shrivastava AK, Jain N (2001) Biosorption of Chromium(VI) from Aqueous solutions by green algae spirogyra species. Water Res 35(17):4079–4085PubMedCrossRefGoogle Scholar
  141. Gyulai G, Bittsanszky A, Szabo Z, Waters Jr L, Gullner G, Kampfl G (2014) Phytoextraction potential of wild type and 35s-gshi transgenic poplar trees (Populus canescens) for environmental pollutants herbicide paraquat, salt sodium, zinc sulfate and nitric oxide in vitro. Int J Phytoremed 16:379–396CrossRefGoogle Scholar
  142. Haddadi A, Shavandi M (2013) Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. Int Biodeter Biodegrad 85:29–34CrossRefGoogle Scholar
  143. Haimi J (2000) Decomposer animals and bioremediation of soils. Environ Pollut 107(2):233–238PubMedCrossRefGoogle Scholar
  144. Han X, Wong YS, Tam NF (2006) Surface complexation mechanism and modeling in Cr(III) biosorption by a microalgal isolate, Chlorella miniata. J Colloid Interface Sci 303(2):365–371PubMedCrossRefPubMedCentralGoogle Scholar
  145. Hanks NA, Caruso JA, Zhang P (2015) Assessing Pistia stratiotes for phytoremediation of silver nanoparticles and Ag (I) contaminated waters. J Environ Man 164:41–45CrossRefGoogle Scholar
  146. Hannink NK, Rosser SJ, French CE, Basran A, Murray JAH, Nicklin S (2001) Phyto-detoxification of TNT by transgenic plants expressing a bacterial nitroreductase. Nat Biotechnol 19:1168–1172PubMedCrossRefPubMedCentralGoogle Scholar
  147. Hannink NK, Rosser SJ, French CE, Bruce NC (2003) Uptake and metabolism of TNT and GTN by plants expressing bacterial pentaerythritol tetranitrate reductase. Water Air Soil Pollut 3(3):251–258CrossRefGoogle Scholar
  148. Harada E, Choi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. J Plant Physiol 158(5):655–661CrossRefGoogle Scholar
  149. Harding LW, Phillips JH (1978) Polychlorinated Biphenyl (PCB) uptake by marine phytoplankton. Mar Biol 49:103–111CrossRefGoogle Scholar
  150. Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUPI). Plant Soil 196:277–281CrossRefGoogle Scholar
  151. He J, Li H, Ma C, Zhang Y, Polle A, Rennenberg H (2015) Overexpression of bacterial g-glutamyl cysteine synthetase mediates changes in cadmium influx, allocation and detoxification in poplar. New Phytol 205:240–254PubMedCrossRefPubMedCentralGoogle Scholar
  152. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5(12):523–530PubMedCrossRefPubMedCentralGoogle Scholar
  153. Hirooka T, Nagase H, Uchida K, Hiroshige Y, Ehara Y, Nishikawa JI, Hirata Z (2005) Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environ Toxicol Chem 24(8):1896–1901PubMedCrossRefGoogle Scholar
  154. Hirose S, Kawahigashi H, Inoue T, Inui H, Ohkawa H, Ohkawa Y (2005) Enhanced expression of CYP2C9 and tolerance to sulfonylurea herbicides in transgenic rice plants. Plant Biotechnol 22:89–96CrossRefGoogle Scholar
  155. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133PubMedPubMedCentralCrossRefGoogle Scholar
  156. Hovsepyan A, Greipsson S (2005) EDTA-enhanced phytoremediation of lead-contaminated soil by corn. J Plant Nutr 28(11):2037–2048CrossRefGoogle Scholar
  157. Hsieh JL, Chen CY, Chiu MH, Chein MF, Chang JS, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925PubMedCrossRefGoogle Scholar
  158. Huang JW, Blaylock MJ, Kapulnik Y, Ensley BD (1998) Phytoremediation of Uranium contaminated soils: Role of organic acids in triggering uranium hyperaccumulation in plants. Environ Sci 32(13):2004–2008CrossRefGoogle Scholar
  159. Hughes JB, Shanks J, Vanderford M, Lauritzen J, Bhadra R (1997) Transformation of TNT by aquatic plants and plant tissue cultures. Environ Sci Technol 31:266–271CrossRefGoogle Scholar
  160. Hussain ST, Mahmood T, Malik SA (2010) Phytoremediation technologies for Ni++ by water hyacinth. Afr J Biotechnol 9(50):8648–8660Google Scholar
  161. Hynes RK, Farrell RE, Germida JJ (2004) Plant-assisted degradation of phenanthrene as assessed by solid-phase microextraction (SPME). Int J Phytoremed 6:253–268CrossRefGoogle Scholar
  162. Ikeura H, Kawasaki Y, Kaimi E, Nishiwaki J, Noborio K, Tamaki M (2016) Screening of plants for phytoremediation of oil-contaminated soil. Int J Phytoremed 18:460–466CrossRefGoogle Scholar
  163. Inui H, Ohkawa H (2005) Herbicide resistance in transgenic plants with mammalian P450 monooxygenase genes. Pest Manag Sci 61:286–291PubMedCrossRefGoogle Scholar
  164. Ishihara K, Nakajima N (2003) Improvement of marine environmental pollution using eco-system: decomposition and recovery of endocrine disrupting chemicals by marine phyto-and zooplanktons. J Mol Catal B Enzym 23:419–424CrossRefGoogle Scholar
  165. Jacome-Pilco CR, Cristiani-Urbina E, Flores-Cotera LB, Velasco-García R, Ponce-Noyola T, Canizares-Villanueva RO (2009) Continuous Cr(VI) removal by Scenedesmus incrassatulus in an airlift photobioreactor. Bioresour Technol 100(8):2388–2391PubMedCrossRefGoogle Scholar
  166. Jadia CD, Fulekar MH (2009) Phytoremediation of heavy metals, recent techniques. Afr J Biotechnol 8(6):921–928Google Scholar
  167. Jan AT, Arif A, Qazi MRH (2014) Phytoremediation: a promising strategy on the crossroads of remediation. In: Soil remedation and plants: prospects and challenges, pp 63–84CrossRefGoogle Scholar
  168. Jansen MAK, Hill LM, Thorneley RNF (2004) A novel stress-acclimation response in Spirodela punctata (Lemnaceae): 2,4,6-trichlorophenol triggers an increase in the level of an extracellular peroxidase, capable of the oxidative dechlorination of this xenobiotic pollutant. Plant Cell Environ 27:603–613CrossRefGoogle Scholar
  169. Jena S, Dey SK (2017) Heavy metals. Am J Environ Stud 1(1):48–60Google Scholar
  170. Jin ZP, Luo K, Zhang S, Zheng Q, Yang H (2012) Bioaccumulation and catabolism of prometryne in green algae. Chemosphere 87:278–284PubMedCrossRefGoogle Scholar
  171. Jung S, lee HJ, Lee Y, Kang K, Kim YS, Grimm B (2008) Toxic tetrapyrrole accumulation in protoporphyrinogrn IX oxidase overexpressing transgenic rice plants. Plant Mol Biol 67:535–546PubMedCrossRefGoogle Scholar
  172. Kaimi E, Mukaidani T, Miyoshi S, Tamaki M (2006) Ryegrass enhancement of biodegradation in diesel-contaminated soil. Environ Exp Bot 55:110–119CrossRefGoogle Scholar
  173. Kanter U, Hauser A, Michalke B, Dräxl S, Schäffner AR (2010) Caesium and strontium accumulation in shoots of Arabidopsis thaliana: genetic and physiological aspects. J Exp Bot 61(14):3995–4009PubMedPubMedCentralCrossRefGoogle Scholar
  174. Karavangeli M, Labrou NE, Clonis YD, Tsaftaris A (2005) Development of transgenic tobacco plants overexpressing maize glutathione S-transferase I for chloroacetanilide herbicides phytoremediation. Biomol Eng 22:121–128PubMedCrossRefGoogle Scholar
  175. Karthikeyan S, Balasubramanian R, Iyer CSP (2007) Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour Technol 98(2):452–455PubMedCrossRefGoogle Scholar
  176. Kausar S, Qaisar M, Raja IA, Khan A, Sultan S, Gilani MA, Shujaat S (2012) Potential of Arundo donax to treat chromium contamination. Ecol Eng 42:256–259CrossRefGoogle Scholar
  177. Kawagashi H, Hirose S, Ohkawa H, Ohkawa Y (2007) Herbicide resistance of transgenic rice plants expressing human CYP1A1. Biotechnol Adv 25:75–85CrossRefGoogle Scholar
  178. Kawahigashi H, Hirose S, Hayashi E, Ohkawa H, Ohkawa Y (2002) Phytotoxicity and metabolism of ethofumesate in transgenic rice plants expressing human CYP2B6 gene. Pestic Biochem Physiol 74:139–147CrossRefGoogle Scholar
  179. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2005a) Phytoremediation of metolachlor by transgenic rice plants expressing human CYP2B6. J Agric Food Chem 53:9155–9160PubMedCrossRefGoogle Scholar
  180. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2005b) Transgenic rice plants expressing human CYP1A1 remediate the triazine herbicides Atrazine and Simazine. J Agric Food Chem 53:8557–8564PubMedCrossRefGoogle Scholar
  181. Kawahigashi H, Hirose S, Ozawa K, Ido Y, Kojima M, Ohkawa H (2005c) Analysis of substrate specificity of pig CYP2B22 and CYP2C49 towards herbicides by transgenic rice plants. Transgenic Res 14:907–917PubMedCrossRefGoogle Scholar
  182. Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2006) Broad range of herbicide tolerance of glutinous upland rice variety ‘Yumenohatamochi’ carrying human cytochrome P450 genes. Plant Biotechnol 23:227–231CrossRefGoogle Scholar
  183. Kawashima CG, Noji M, Nakamura M, Ogra Y, Suzuki KT, Saito K (2004) Heavy metal tolerance of transgenic tobacco plants over-expressing cysteine synthase. Biotechnol Lett 26(2):153–157PubMedCrossRefGoogle Scholar
  184. Kebeish R, Azab E, Peterhaensel C, El-Basheer R (2014) Engineering the metabolism of the phenylurea herbicide chlortoluron in genetically modified Arabidopsis thaliana plants expressing the mammalian cytochrome P450 enzyme CYP1A2. Environ Sci Pollut Res Int 21(13):8224–8232PubMedCrossRefGoogle Scholar
  185. Kebeish R, Aboelmyb M, El-Naggara A, El-Ayoutya Y, Peterhanselb C (2015) Simultaneous overexpression of cyanidase and formate dehydrogenase in Arabidopsis thaliana chloroplasts enhanced cyanide metabolism and cyanide tolerance. Environ Exp Bot 110:19–26CrossRefGoogle Scholar
  186. Keeling SM, Stewart RB, Anderson CWN, Robinson BH (2003) Nickel and cobalt phytoextraction by the hyperaccumulator Berkheya coddii, implications for polymetallic phytomining and phytoremediation. Int J Phytoremed 5(3):235–244CrossRefGoogle Scholar
  187. Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19CrossRefGoogle Scholar
  188. Khan MJ, Azeem MT, Jan MT, Perveen S (2012) Effect of amendments on chemical immobilization of heavy metals in sugar mill contaminated soils. Soil Environ 31(1)Google Scholar
  189. Khellaf N, Zerdaoui M (2009) Phytoaccumulation of zinc by the aquatic plant, Lemna gibba L. Bioresource Technol 100(23):6137–6140CrossRefGoogle Scholar
  190. Khoudi H, Maatar Y, Gouiaa S, Masmoudi K (2012) Transgenic tobacco plants expressing ectopically wheat H+-pyrophosphatase (H+-PPase) gene TaVP1 show enhanced accumulation and tolerance to cadmium. J Plant Physiol 169(1):98–103PubMedCrossRefGoogle Scholar
  191. Kidd P, Barcelo J, Bernal MP, Navari-Izzo F, Poschenrieder C, Shilev S (2009) Trace element behaviour at the root-soil interface: implications in phytoremediation. Environ Exp Bot 67:243–259CrossRefGoogle Scholar
  192. Kim S, Takahashi M, Higuchi K, Tsunoda K, Nakanishi H, Yoshimura E, Nishizawa NK (2005) Increased nicotianamine biosynthesis confers enhanced tolerance of high levels of metals, in particular nickel, to plants. Plant Cell Physiol 46(11):1809–1818PubMedCrossRefGoogle Scholar
  193. Knuteson SL, Whitwell T, Klaine SJ (2002) Influence of plant age and size on simazine toxicity and uptake. J Environ Qual 31:2096–2103PubMedCrossRefGoogle Scholar
  194. Koprivova A, Kopriva S, Jäger D, Will B, Jouanin L, Rennenberg H (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4:664–670CrossRefGoogle Scholar
  195. Kou YG, Fu XY, Hou PQ, Zhan ZC, Bai W, Yao Y (2008) The study of lead accumulation of earthworm in lead pollution soil. J Environ Sci Manag 33(1):62–64Google Scholar
  196. Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638CrossRefGoogle Scholar
  197. Kucerova P, In der Wiesche C, Wolter M, Macek T, Zadrazil F, Mackova M (2001) The ability of different plant species to remove polycyclic aromatic hydrocarbons and polychlorinated biphenyls from incubation media. Biotechnol Lett 23:1355–1359CrossRefGoogle Scholar
  198. Kumar V, Chopra AK (2017) Phytoremediation potential of water caltrop (Trapa natans L.) using municipal wastewater of the activated sludge process-based municipal wastewater treatment plant. Environ Technol 22:1–12CrossRefGoogle Scholar
  199. Kumar B, Smita K, Flores LC (2014) Plant mediated detoxification of mercury and lead. Arab J Chem 10:S2335–S2342CrossRefGoogle Scholar
  200. Kumar V, Chopra AK, Singh J, Thakur RK, Srivastava S, Chauhan RK (2016) Comparative assessment of phytoremediation feasibility of water caltrop (Trapa natans L.) and water hyacinth (Eichhornia crassipes Solms.) using pulp and paper mill effluent. Arc Agri Environ Sci 1:13–21Google Scholar
  201. Kunihiro S, Saito T, Matsuda T, Inoue M, Kuramata M, Taguchi-Shiobara F, Kusano T (2013) Rice DEP1, encoding a highly cysteine-rich G protein γ subunit, confers cadmium tolerance on yeast cells and plants. J Exp Bot 64(14):4517–4527PubMedPubMedCentralCrossRefGoogle Scholar
  202. Kurnik K, Treder K, Skorupa-Kłaput M, Tretyn A, Tyburski J (2015) Removal of phenol from synthetic and industrial wastewater by potato pulp peroxidases. Water Air Soil Pollut 226(8):254PubMedPubMedCentralCrossRefGoogle Scholar
  203. Kurumata M, Takahashi M, Sakamotoa A, Ramos JL, Nepovim A, Vanek T (2005) Tolerance to and uptake and degradation of 2,4,6- trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch 60:272–278CrossRefGoogle Scholar
  204. Lamaia C, Kruatrachuea M, Pokethitiyooka P, Upathamb ES, Soonthornsarathoola V (2005) Toxicity and accumulation of lead and cadmium in the filamentous green alga Cladophora fracta (OF Muller ex Vahl) Kutzing: a laboratory study. Sci Asia 31(2):121–127CrossRefGoogle Scholar
  205. Le TT, Nguyen KH, Jeon JR, Francis AJ, Chang YS (2015) Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. J Hazard Mater 287:335–341PubMedPubMedCentralCrossRefGoogle Scholar
  206. LeBlanc MS, McKinney EC, Meagher RB, Smith AP (2013) Hijacking membrane transporters for arsenic phytoextraction. J Biotechnol 163(1):1–9PubMedCrossRefGoogle Scholar
  207. LeDuc DL, Tarun AS, Montes-Bayon M, Meija J, Malit MF, Wu CP, Böck A (2004) Overexpression of selenocysteine methyltransferase in Arabidopsis and Indian mustard increases selenium tolerance and accumulation. Plant Physiol 135(1):377–383PubMedPubMedCentralCrossRefGoogle Scholar
  208. LeDuc DL, AbdelSamie M, Móntes-Bayon M, Wu CP, Reisinger SJ, Terry N (2006) Overexpressing both ATP sulfurylase and selenocysteine methyltransferase enhances selenium phytoremediation traits in Indian mustard. Environ Pollut 144(1):70–76PubMedCrossRefGoogle Scholar
  209. Lee YC, Chang SP (2011) The biosorption of heavy metals from aqueous solution by Spirogyra and Cladophora filamentous macroalgae. Bioresour Technol 102(9):5297–5304PubMedCrossRefPubMedCentralGoogle Scholar
  210. Lee BR, Hwang S (2015) Over-expression of NtHb1 encoding a non-symbiotic class 1 hemoglobin of tobacco enhances a tolerance to cadmium by decreasing NO (nitric oxide) and Cd levels in Nicotiana tabacum. Environ Exper Bot 113:18–27CrossRefGoogle Scholar
  211. Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I, Lee Y (2003) Functional expression of a bacterial heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596PubMedPubMedCentralCrossRefGoogle Scholar
  212. Lee HS, Suh JH, Kim IB, Yoon T (2004) Effect of aluminum in two-metal biosorption by an algal biosorbent. Min Eng 17(4):487–493CrossRefGoogle Scholar
  213. LeFevre GH, Müller CE, Li RJ, Luthy RG, Sattely ES (2015) Rapid phytotransformation of benzotriazole generates synthetic tryptophan and auxin analogs in Arabidopsis. Environ Sci Technol 49(18):10959–10968PubMedCrossRefGoogle Scholar
  214. Lei AP, Hu ZL, Wong YS, Tam NF (2007) Removal of fluoranthene andpyrene by different microalgal species. Bioresour Technol 98(2):273–280PubMedCrossRefGoogle Scholar
  215. Li H, Sheng G, Sheng W, Xu O (2002) Uptake of trifluralin and lindane from water by ryegrass. Chemosphere 48:335–341PubMedCrossRefGoogle Scholar
  216. Li GY, Hu N, Ding DX, Zheng JF, Liu YL, Wang YD, Nie XQ (2011) Screening of plant species for phytoremediation of uranium, thorium, barium, nickel, strontium and lead contaminated soils from a uranium mill tailings repository in South China. Bull Environ Contam Toxicol 86(6):646–652PubMedCrossRefPubMedCentralGoogle Scholar
  217. Lim JM, Salido AL, Butcher DJ (2004) Phytoremediation of lead using Indian mustard (Brassica juncea) with EDTA and electrodics. Microchem J 76(1):3–9CrossRefGoogle Scholar
  218. Lim SL, Chu WL, Phang SM (2010) Use of Chlorella vulgaris for bioremediation of textile wastewater. Bioresour Technol 101:7314–7322PubMedCrossRefPubMedCentralGoogle Scholar
  219. Limura Y, Ikeda S, Sonoki T, Hayakawa T, Kajita S, Kimbara K (2002) Expression of a gene for Mn-peroxidase from Coriolus versicolor in transgenic tobacco generates potential tools for phytoremediation. Appl Microbiol Biotechnol 59:246–251CrossRefGoogle Scholar
  220. Liphadzi MS, Kirkham MB, Mankin KR, Paulsen GM (2003) EDTA-assisted heavy-metal uptake by poplar and sunflower grown at a long-term sewage-sludge farm. Plant Soil 257(1):171–182CrossRefGoogle Scholar
  221. Liste HH, Prutz I (2006) Plant performance, dioxygenase-expressing rhizosphere bacteria, and biodegradation of weathered hydrocarbons in contaminated soil. Chemosphere 62:1411–1420PubMedCrossRefPubMedCentralGoogle Scholar
  222. Liu WX, Shen LF, Liu JW, Wang YW, Li SR (2007) Uptake of toxic heavy metals by rice (Oryza sativa L.) cultivated in the agricultural soil near Zhengzhou City, People’s Republic of China. Bull Environ Contam Toxicol 79(2):209–213PubMedCrossRefPubMedCentralGoogle Scholar
  223. Liu D, An Z, Mao Z, Ma L, Lu Z (2015) Enhanced heavy metal tolerance and accumulation by transgenic sugar beets expressing Streptococcus thermophilus STGCS-GS in the presence of Cd, Zn and Cu alone or in combination. PLoS ONE 10(6):1–15Google Scholar
  224. Liu J, Ding Y, Ma L, Gao G, Wang Y (2017) Combination of biochar and immobilized bacteria in cypermethrin-contaminated soil remediation. Int Biodeter Biodegrad 120:15–20CrossRefGoogle Scholar
  225. Lo Cicero L, Madesis P, Tsaftaris A, Lo Piero AR (2015) Tobacco plants over-expressing the sweet orange tau glutathione transferases (CsGSTUs) acquire tolerance to the diphenyl ether herbicide fluorodifen and to salt and drought stresses. Phytochem 116:69–77CrossRefGoogle Scholar
  226. Luo F, Liu Y, Li X, Xuan Z, Ma J (2006) Biosorption of lead ion by chemically modified biomass of marine brown algae Laminaria japonica. Chemosphere 64(7):1122–1127PubMedCrossRefPubMedCentralGoogle Scholar
  227. Lv Y, Deng X, Quan L, Xia Y, Shen Z (2013) Metallothioneins BcMT1 and BcMT2 from Brassica campestris enhance tolerance to cadmium and copper and decrease production of reactive oxygen species in Arabidopsis thaliana. Plant Soil 367(1–2):507–519CrossRefGoogle Scholar
  228. Lv B, Xing M, Yang J (2016) Speciation and transformation of heavy metals during vermicomposting of animal manure. Bioresour Technol 209:397–401PubMedCrossRefPubMedCentralGoogle Scholar
  229. Lytle CM, Lytle FW, Yang N, Qian JH, Hansen D, Zayed A, Terry N (1988) Reduction of Cr(VI) to Cr(III) by wetland plants, potential for in situ heavy metal detoxification. Environ Sci Technol 32:3087–3093CrossRefGoogle Scholar
  230. Ma X, Richter AR, Albers S, Burken JG (2004) Phytoremediation of MTBE with hybrid poplar trees. Int J Phytoremed 6(2):157–167CrossRefGoogle Scholar
  231. Macek T, Mackova M, Kas J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–34PubMedCrossRefPubMedCentralGoogle Scholar
  232. Madariaga-Navarrete A, Rodríguez-Pastrana BR, Villagómez-Ibarra JR, Acevedo-Sandoval OA, Perry G, Islas-Pelcastre M (2017) Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L.) and a locally adapted microbial consortium. J Environ Sci Health B 1:9Google Scholar
  233. Mahmoud RH, Hamza AHM (2017) Phytoremediation application: plants as biosorbent for metal removal in soil and water. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 405–422CrossRefGoogle Scholar
  234. Maiti IB, Wagner GJ, Yeargan R, Hunt AG (1989) Inheritance and expression of the mouse metallothionein gene in tobacco: impact on cd tolerance and tissue cd distribution in seedlings. Plant Physiol 91(3):1020–1024PubMedPubMedCentralCrossRefGoogle Scholar
  235. Malik B, Pirzadah TB, Tahir I, Dar TH, Rehman R (2014) Recent trends and approaches in phytoremediation. In: Soil remediation and plants: prospects and challenges, pp 131–146CrossRefGoogle Scholar
  236. Mao J, Luo Y, Teng Y, Li Z (2012) Bioremediation of polycyclic aromatic hydrocarbon-contaminated soil by a bacterial consortium and associated microbial community changes. Int Biodeter Biodegrad 70:141–147CrossRefGoogle Scholar
  237. Marchand C (2017) Phytoremediation of soil contaminated with petroleum hydrocarbons and trace elements (PhD dissertation). Linnaeus University, SwedenGoogle Scholar
  238. Marques AP, Moreira H, Rangel AO, Castro PM (2009) Arsenic, lead and nickel accumulation in Rubus ulmifolius growing in contaminated soil in Portugal. J Hazard Mater 165(1):174–179PubMedCrossRefGoogle Scholar
  239. Mata YN, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2008) Characterization of the biosorption of cadmium, lead and copper with the brown alga Fucus vesiculosus. J Hazard Mater 158(2–3):316–323PubMedCrossRefGoogle Scholar
  240. Mata YN, Torres E, Blazquez ML, Ballester A, Gonzalez F, Munoz JA (2009) Gold(III) biosorption and bioreduction with the brown alga Fucus vesiculosus. J Hazard Mater 166(2–3):612–618PubMedCrossRefGoogle Scholar
  241. Matamoros V, Gutierrez R, Ferrer I, Garcia J, Bayona JM (2015) Capability of microalgae-based wastewater treatment systems to remove emerging organic contaminants: a pilot-scale study. J Hazard Mater 288:34–42PubMedCrossRefGoogle Scholar
  242. Mazumdar K, Das S (2015) Phytoremediation of Pb, Zn, Fe, and Mg with 25 wetland plant species from a paper mill contaminated site in North East India. Environ Sci Pollut Res 22:701–710CrossRefGoogle Scholar
  243. Megharaj M, Venkateswarlu K, Rao AS (1987) Metabolism of monocrotophos and quinalphos by algae isolated from soil. Bull Environ Contam Toxicol 39:251–256PubMedCrossRefGoogle Scholar
  244. Megharaj M, Kantachote D, Singleton I, Naidu R (2000) Effects of long-term contamination of DDT on soil microfl ora with special reference to soil algae and algal transformation of DDT. Environ Pollut 109:35–42PubMedCrossRefGoogle Scholar
  245. Mehta SK, Gaur JP (2001) Characterization and optimization of Ni and Cu sorption from aqueous solution by Chlorella vulgaris. Ecol Eng 18(1):1–13CrossRefGoogle Scholar
  246. Mehta S, Tripathi B, Gaur J (2002) Enhanced sorption of Cu 2þ and Ni 2þ by acid pretreated Chlorella vulgaris from single and binary metal solutions. J Appl Phycol 14(4):267–273CrossRefGoogle Scholar
  247. Merkl N, Schultze-Kraft R, Infante C (2005) Assessment of tropical grasses and legumes for phytoremediation of petroleum-contaminated soils. Water Air Soil Pollut 165:195–209CrossRefGoogle Scholar
  248. Merkl N, Schultze-Kraft R, Arias M (2006) Effect of the tropical grass Brachiaria brizantha (Hochst. ex A. Rich.) Stapf on microbial population and activity in petroleum-contaminated soil. Microbiol Res 16:180–191Google Scholar
  249. Mesjasz-Przybyłowicz JO, Nakonieczny MI, Migula PA, Augustyniak MA, Tarnawska MO, Reimold WU, Koeberl CH, Przybyłowicz WO, Głowacka E (2004) Uptake of cadmium, lead nickel and zinc from soil and water solutions by the nickel hyperaccumulator Berkheya coddii. Acta Biol Crac Ser Bot 1(46):75–85Google Scholar
  250. Mirza N, Mahmood Q, Pervez A, Ahmad R, Farooq R, Shah MM, Azim MR (2010a) Phytoremediation potential of Arundo donax L in arsenic contaminated synthetic wastewater. Bioresour Technol 101:5815–5819PubMedCrossRefGoogle Scholar
  251. Mirza N, Pervez A, Mahmood Q, Ahmad SS (2010b) Phytoremediation of arsenic (As) and mercury (Hg) contaminated soil. World Appl Sci J 1(8):113–118Google Scholar
  252. Mirza N, Mahmood Q, Maroof Shah M, Pervez A, Sultan S (2014) Plants as useful vectors to reduce environmental toxic arsenic content. Sci World J 2014Google Scholar
  253. Mishra S, Shanker K, Srivastava MM, Srivastava S, Shrivastav R, Dass S, Prakash S (1997) A study on the uptake of trivalent and hexavalent chromium by paddy (Oryza sativa), possible chemical modifications in rhizosphere. Agric Ecosyst Environ 62(1):53–58CrossRefGoogle Scholar
  254. Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:16–18CrossRefGoogle Scholar
  255. Mittal A, Singh P (2009) Isolation of hydrocarbon degrading bacteria from soils contaminated with crude oil spills. Indian J Exp Biol 47:760–765PubMedPubMedCentralGoogle Scholar
  256. Mohammadi M, Chalavi V, Novakova-Sura M, Laiberte JF, Sylvestre M (2007) Expression of bacterial biphenyl-chlorobiphenyl dioxygenase genes in tobacco plants. Biotechnol Bioeng 97:496–505PubMedCrossRefGoogle Scholar
  257. Mojiri A (2011) The potential of corn (Zea mays) for phytoremediation of soil contaminated with cadmium and lead. J Bio Environ Sci 5(13)Google Scholar
  258. Mojiri A, Aziz HA, Aziz SQ, Selamat MRB, Gholami A, Aboutorab M (2013) Phytoremediation of soil contaminated with nickel by Lepidium sativum; optimization by response surface methodology. Global NEST J 15(1):69–75CrossRefGoogle Scholar
  259. Mokhtar H, Morad N, Fizri FFA (2011) Phytoaccumulation of copper from aqueous solutions using Eichhornia Crassipes and Centella Asiatica. Int J Environ Sci Dev 2(3):205CrossRefGoogle Scholar
  260. Monteiro C, Castro PL, Xavier Malcata F (2011) Biosorption of zinc ions from aqueous solution by the microalga Scenedesmus obliquus. Environ Chem Lett 9(2):169–176CrossRefGoogle Scholar
  261. Moro CV, Bricheux G, Portelli C, Bohatier J (2012) Comparative effects of the herbicides chlortoluron and mesotrione on freshwater microalgae. Environ Toxicol Chem 31:778–786PubMedCrossRefPubMedCentralGoogle Scholar
  262. Mukhtar S, Bhatti HN, Khalid M, Haq MAU, Shahzad SM (2010) Potential of sunflower (Helianthus annuus L.) for phytoremediation of nickel (Ni) and lead (Pb) contaminated water. Pak J Bot 42(6):40–174026Google Scholar
  263. Muñoz R, Guieysse B, Mattiasson B (2003) Phenanthrene biodegradation by an algal-bacterial consortium in two-phase partitioning bioreactors. Appl Microbiol Biotechnol 61:261–267PubMedCrossRefGoogle Scholar
  264. Muratova A, Hubner T, Narula N, Wand H, Turkovskaya O, Kuschk P, Merbach W (2003) Rhizosphere microflora of plants used for the phytoremediation of bitumen-contaminated soil. Microbiol Res 158:151–161PubMedCrossRefPubMedCentralGoogle Scholar
  265. Najeeb U, Xu L, Ali S, Jilani G, Gong HJ, Shen WQ, Zhou WJ (2009) Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. J Hazard Mater 170(2):1156–1163PubMedCrossRefGoogle Scholar
  266. Nedelkoska TV, Doran PM (2000) Hyperaccumulation of Cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67(5):607–615PubMedCrossRefGoogle Scholar
  267. Neudorf S, Khan MAQ (1975) Pick-up and metabolism of DDT, dieldrin and photodieldrin by a fresh water alga (Ankistrodesmus amalloides) and a microcrustacean (Daphnia pulex). Bull Environ Contam Toxicol 13:443–450PubMedCrossRefGoogle Scholar
  268. Neuwoehner J, Escher BI (2011) The pH-dependent toxicity of basic pharmaceuticals in the green algae Scenedesmus vacuolatus can be explained with a toxicokinetic ion-trapping model. Aquat Toxicol 101:266–275PubMedCrossRefGoogle Scholar
  269. Newcombe DA, Crowley DE (1999) Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degrading bacteria. Appl Microbiol Biotechnol 51:877–882PubMedCrossRefGoogle Scholar
  270. Newman LA, Reynolds CM (2004) Phytodegradation of organic compounds. Curr Opin Biotech 15(3):225–230PubMedCrossRefGoogle Scholar
  271. Nie L, Shah S, Rashid A, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361CrossRefGoogle Scholar
  272. Nikolic M, Stevovic S (2015) Family Asteraceae as a sustainable planning tool in phytoremediation and its relevance in urban areas. Urban For Urban Green 14:782–789CrossRefGoogle Scholar
  273. Nkrumah PN, Baker AJM, Chaney RL, Erskine PD, Echevarria G, Morel JL, Van der Ent A (2016) Current status and challenges in developing Ni phytomining: an agronomic perspective. Plant Soil 406(1):55–69CrossRefGoogle Scholar
  274. Nouri J, Khorasani N, Lorestani B, Karami M, Hassani AH, Yousefi N (2009) Accumulation of heavy metals in soil and uptake by plant species with phytoremediation potential. Environ Earth Sci 59(2):315–323CrossRefGoogle Scholar
  275. Novo LA, Castro PM, Alvarenga P, da Silva EF (2017) Phytomining of rare and valuable metals. In: Ansari A, Gill S, Gill R, Lanza G, Newman L (eds) Phytoremediation. Springer, Cham, pp 469–486CrossRefGoogle Scholar
  276. Nuhoglu Y, Malkoc E, Gürses A, Canpolat N (2002) The removal of Cu(II) from aqueous solutions by Ulothrix zonata. Bioresour Technol 85(3):331–333PubMedCrossRefGoogle Scholar
  277. OKeefe DP, Tepperman JM, Dean C, Leto KJ, Erbes DL, Odell JT (1994) Plant expression of a bacterial cytochrome P450 that catalyzes activation of a sulfonylurea pro-herbicide. Plant Physiol 105:473–824CrossRefGoogle Scholar
  278. Olette R, Couderchet M, Biagianti S, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123CrossRefGoogle Scholar
  279. Olguin EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22(1):81–91PubMedCrossRefGoogle Scholar
  280. Olguin EJ (2012) Dual purpose microalgae–bacteria-based systems that treat wastewater and produce biodiesel and chemical products within a biorefinery. Biotechnol Adv 30(5):1031–1046PubMedCrossRefGoogle Scholar
  281. Oller ALW, Agostini E, Talano MA, Capozucca C, Milrad SR, Tigier A (2005) Overexpression of a basic peroxidase in transgenic tomato (Lycopersicon esculentum Mill cv Pera) hairy roots increases phytoremediation of phenol. Plant Sci 169:1102–1111CrossRefGoogle Scholar
  282. Onyancha D, Mavura W, Ngila JC, Ongoma P, Chacha J (2008) Studies of chromium removal from tannery wastewaters by algae biosorbents, Spirogyra condensata and Rhizoclonium hieroglyphicum. J Hazard Mater 158(2–3):605–614PubMedCrossRefGoogle Scholar
  283. Ortega-Gonzalez DK, Martínez-González G, Flores CM, Zaragoza D, Cancino-Diaz JC, Cruz-Maya JA, Jan-Roblero J (2015) Amycolatopsis sp. Poz14 isolated from oil-contaminated soil degrades polycyclic aromatic hydrocarbons. Int Biodeter Biodegrad 99:165–173CrossRefGoogle Scholar
  284. Osuji AC, Eze SOO, Osayi EE, Chilaka FC (2014) Biobleaching of industrial important dyes with peroxidase partially purified from garlic. Sci World J 2014:1–8CrossRefGoogle Scholar
  285. Ozer D, Ozer A, Dursun G (2000) Investigation of zinc (II) adsorption on Cladophora crispata in a two-staged reactor. J ChemTechnol Biotechnol 75(5):410–416CrossRefGoogle Scholar
  286. Ozer A, Ozer D, Ibrahim EkIz H (2004) The equilibrium and kinetic modelling of the biosorption of copper(II) ions on Cladophora crispata. Adsorption 10(4):317–326CrossRefGoogle Scholar
  287. Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-1-gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351PubMedCrossRefGoogle Scholar
  288. Panda SS, Dhal NK (2016) A novel green technology to clean up the highly contaminated chromites mining sites of Odisha. In: Shukla P (ed) Microbial biotechnology: an interdisciplinary approach. CRC Press, Boca Raton, pp 21–31CrossRefGoogle Scholar
  289. Pandey VC, Mishra T (2016) Assessment of Ziziphus mauritiana grown on fly ash dumps: prospects for phytoremediation but concerns with the use of edible fruit. Int J Phytoremed. [Epub ahead of print]Google Scholar
  290. Panwar BS, Ahmed KS, Mittal SB (2001) Phytoremediation of nickel-contaminated soils by Brassica species. Environ Dev Sustain 4:1–6CrossRefGoogle Scholar
  291. Payne R (2000) Spirulina as bioremediation agent: interaction with metals and involvement of carbonic anhydrase. MSc thesis, Rhodes University, South AfricaGoogle Scholar
  292. Peng R, Fu X, Tian Y, Zhao W, Zhu B, Xu J (2014a) Metabolic engineering of Arabidopsis for remediation of different polycyclic aromatic hydrocarbons using a hybrid bacterial dioxygenase complex. Metab Eng 26:100–110PubMedCrossRefGoogle Scholar
  293. Peng RH, Fu XY, Zhao W, Tian YS, Zhu B, Han HJ (2014b) Phytoremediation of phenanthrene by transgenic plants transformed with a naphthalene dioxygenase system from Pseudomonas. Environ Sci Technol 48:12824–12832PubMedCrossRefGoogle Scholar
  294. Perales-Vela HV, Pena-Castro JM, Canizares-Villanueva RO (2006) Heavy metal detoxification in eukaryotic microalgae. Chemosphere 64:1–10PubMedCrossRefGoogle Scholar
  295. Pérez-Palacios P, Agostini E, Ibáñez SG, Talano MA, Rodríguez-Llorente ID, Caviedes MA, Pajuelo E (2017) Removal of copper from aqueous solutions by rhizofiltration using genetically modified hairy roots expressing a bacterial Cu-binding protein. Enviro Technol 38(22):2877–2888CrossRefGoogle Scholar
  296. Pianelli K, Mari S, Marquès L, Lebrun M, Czernic P (2005) Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Trans Research 14(5):739–748CrossRefGoogle Scholar
  297. Pilipović A, Orlović S, Katanić M, Simeunović J, Pekeč S, Matavuly M (2015) Phosphatase activity as a parameter for assessment of the rhizodegradation potential of poplar clones: Greenhouse dose-response experiment of phytoremediation of oil contaminated soil. Biologia Serbica 36(1–2)Google Scholar
  298. Pilon smits EAH, Zhu YL, Sears T, Terry N (2000) Overexpression of glutathione reductase in Brassica juncea: effects on cadmium accumulation and tolerance. Plant Physiol 110:455–460CrossRefGoogle Scholar
  299. Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N, Pilon-Smits EAH (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131(3):1250–1257PubMedPubMedCentralCrossRefGoogle Scholar
  300. Polti MA, Aparicio JD, Benimeli CS, Amoroso MJ (2014) Simultaneous bioremediation of Cr (VI) and lindane in soil by actinobacteria. Int Biodeter Biodegrad 88:48–55CrossRefGoogle Scholar
  301. Pomponi M, Censi V, Di Girolamo V, De Paolis A, di Toppi LS, Aromolo R, Cardarelli M (2006) Overexpression of Arabidopsis phytochelatin synthase in tobacco plants enhances Cd2+ tolerance and accumulation but not translocation to the shoot. Planta 223(2):180–190PubMedCrossRefGoogle Scholar
  302. Prakash S, Selvaraju M, Ravikumar K, Punnagaiarasi A (2017) The role of decomposer animals in bioremediation of soils. In: Bioremediation and sustainable technologies for cleaner environment, Springer, pp 57–64Google Scholar
  303. Rafati M, Khorasani N, Moattar F, Shirvany A, Moraghebi F, Hosseinzadeh S (2011) Phytoremediation potential of Populus alba and Morus alba for cadmium, chromuim and nickel absorption from polluted soil. Int J Environ Res 5(4):961–970Google Scholar
  304. Rahman MM, Azirun SM, Boyce AN (2013) Enhanced accumulation of copper and lead in amaranth (Amaranthus paniculatus), Indian mustard (Brassica juncea) and sunflower (Helianthus annuus). PloS One 8(5):62941CrossRefGoogle Scholar
  305. Rahman M, Haq N, Williams I (2016) Phytoaccumulation of arsenic, cadmium and lead by Brassica juncea parents and their F1 hybrids. J Environ Prot 7:613–622CrossRefGoogle Scholar
  306. Rai PK (2010) Microcosm investigation on phytoremediation of Cr using Azolla pinnata. Int J Phytoremed 12:96–104CrossRefGoogle Scholar
  307. Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28:142–149PubMedCrossRefPubMedCentralGoogle Scholar
  308. Rashid A, Mahmood T, Mehmood F, Khalid A, Saba B, Batool A, Riaz A (2014) Phytoaccumulation, competitive adsorption and evaluation of chelators-metal interaction in lettuce plant. Environ Eng Manag J 13(10):2583–2592CrossRefGoogle Scholar
  309. Reisinger S, Schiavon M, Terry N, Pilon-Smits EAH (2008) Heavy metal tolerance and accumulation in Indian mustard (Brassica juncea L.) expressing bacterial γ–glutamylcysteine synthetase or glutathione synthetase. Int J Phytoremed 10:1–15CrossRefGoogle Scholar
  310. Rincon J, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2005) Biosorption of heavy metals by chemically-activated alga Fucus vesiculosus. J Chem Technol Biotechnol 80(12):1403–1407CrossRefGoogle Scholar
  311. Robinson BH, Chiarucci A, Brooks RR, Petit D, Kirkman JH, Gregg PEH, De Dominicis V, (1997) The nickel hyperaccumulator plant Alyssum bertolonii as a potential agent for phytoremediation and phytomining of nickel. J Geochem Explor 59:75–86CrossRefGoogle Scholar
  312. Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric chelate reductase for uptake from soils. Nature 397:694–697PubMedCrossRefPubMedCentralGoogle Scholar
  313. Rodríguez-Llorente ID, Pérez-Palacios P, Doukkali B, Caviedes MA, Pajuelo E (2010) Expression of the seed-specific metallothionein mt4a in plant vegetative tissues increases Cu and Zn tolerance. Plant Sci 178(3):327–332CrossRefGoogle Scholar
  314. Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98(17):3344–3353PubMedCrossRefGoogle Scholar
  315. Rosser SJ, French CE, Bruce NC (2001) Special symposium: phytoremediation: engineering plants for the phytodetoxification of explosives. In vitro Cell Dev Biol-Plant 37:330–333CrossRefGoogle Scholar
  316. Rylott EL, Jackson RG, Edwards J, Womack GL, Seth-Smith HMB, Rathbone DA (2006) An explosive-degrading cytochrome P450 activity and its targeted application for phytoremediation of RDX. Nat Biotechnol 24:216–219PubMedCrossRefGoogle Scholar
  317. Saha P, Shinde O, Sarkar S (2017) Phytoremediation of industrial mines wastewater using water hyacinth. Int J Phytoremed 19:87–96CrossRefGoogle Scholar
  318. Sakthivel V, Vivekanandan M (2009) Reclamation of tannery polluted soil through phytoremediation. Physiol Mol Biol Plants 15(2):175–180PubMedPubMedCentralCrossRefGoogle Scholar
  319. Salt DE, Blaylock M, Kumar NPBA, Dushenkov V, Ensley BD, Chet I, Raskin I (1995) Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Biotechnol 13:468–475Google Scholar
  320. Sampanpanish P, Tippayasak K, Chairat-utai P (2010) Chromium accumulation by phytoremediation with monocot weed plant species and a hydroponic sand culture system. J Environ Res Dev 4(3):654–667Google Scholar
  321. Samuelsen AI, Martin RC, Mok DWS, Machteld CM (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118:51–58PubMedPubMedCentralCrossRefGoogle Scholar
  322. Santos-Díaz MDS, Barrón-Cruz MDC (2011) Removing heavy metals by in vitro cultures. In: Loyola-Vargas VM, Ochoa-Alejo N (eds) Plant cell culture protocols, Methods in molecular biology, vol 877. Springer, New DelhiGoogle Scholar
  323. Sari A, Tuzen M (2008) Biosorption of Pb(II) and Cd(II) from aqueous solution using green alga (Ulva lactuca) biomass. J Hazard Mater 152(1):302–308PubMedCrossRefGoogle Scholar
  324. Sarkar D, Datta R, Hannigan R (2007) Concepts and applications in environmental geochemistry, vol 5. Elsevier ScienceGoogle Scholar
  325. Sasmaz A, Obek E (2012) The accumulation of silver and gold in Lemna gibba L. exposed to secondary effluents. Chem Erde-Geochem 72(2):149–152CrossRefGoogle Scholar
  326. Sebastiani L, Scebba F, Tognetti R (2004) Heavy metal accumulation and growth responses in poplar clones Eridano (Populus deltoids × maximowiczii) and I-214 (P× euramericana) exposed to industrial waste. Environ Exp Bot 52(1):79–88CrossRefGoogle Scholar
  327. Sekhar K, Priyanka B, Reddy VD, Rao KV (2011) Metallothionein 1 (CcMT1) of pigeonpea (Cajanus cajan L.) confers enhanced tolerance to copper and cadmium in Escherichia coli and Arabidopsis thaliana. Environ Exp Bot 72(2):131–139CrossRefGoogle Scholar
  328. Sethunathan N, Megharaj M, Chen ZL, Williams BD, Lewis G, Naidu R (2004) Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfan sulfate, in liquid medium and soil. J Agric Food Chem 52:3030–3035PubMedCrossRefPubMedCentralGoogle Scholar
  329. Shang TQ, Gordon MP (2003) Transformation of (14C) trichloroethylene by poplar suspension cells. Chemosphere 47:957–962CrossRefGoogle Scholar
  330. Sharma SS, Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57(4):711–726PubMedCrossRefPubMedCentralGoogle Scholar
  331. Sheoran V, Sheoran AS, Poonia P (2013) Phytomining of gold: a review. J Geochem Explor 128:42–50CrossRefGoogle Scholar
  332. Sherburne LA, Joshua DS, Pedro JJA (2005) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) degradation by Acetobacterium paludosum. Biodegrad 16:539–547CrossRefGoogle Scholar
  333. Shim D, Kim S, Choi YI, Song WY, Park J, Youk ES, Lee Y (2013) Transgenic poplar trees expressing yeast cadmium factor 1 exhibit the characteristics necessary for the phytoremediation of mine tailing soil. Chemosphere 90(4):1478–1486PubMedCrossRefPubMedCentralGoogle Scholar
  334. Shukla OP, Dubey S, Rai UN (2007) Preferential accumulation of cadmium and chromium, toxicity in Bacopa monnieri L. under mixed metal treatments. Bull Environ Contam Toxicol 78:252–257PubMedCrossRefPubMedCentralGoogle Scholar
  335. Siemianowski O, Barabasz A, Kendziorek M, Ruszczynska A, Bulska E, Williams LE (2014) HMA4 expression in tobacco reduces Cd accumulation due to the induction of the apoplastic barrier. J Exp Bot 65:1125–1139PubMedPubMedCentralCrossRefGoogle Scholar
  336. Siminszky B, Corbin FT, Ward ER, Fleischmann TJ, Dewey RE (1999) Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides. Proc Natl Acad Sci USA 96(4):1750–17555PubMedCrossRefPubMedCentralGoogle Scholar
  337. Singh A, Prasad SM (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12(1):353–366CrossRefGoogle Scholar
  338. Singh BK, Walker A, Morgan JAW, Wright DJ (2004) Biodegradation of chlorpyrifos by Enterobacter strain B-14 and its use in bioremediation of contaminated soils. Appl Environ Microbiol 70:4855–4863PubMedPubMedCentralCrossRefGoogle Scholar
  339. Singh S, Melo JS, Eapen S, D'Souza SF (2006) Phenol removal by Brassica juncea hairy roots: role of inherent peroxidase and H2O2. J Biotechnol 123(1):43–49PubMedCrossRefPubMedCentralGoogle Scholar
  340. Singh A, Kumar D, Gaur JP (2007) Copper(II) and lead(II) sorption from aqueous solution by non-living Spirogyra neglecta. Bioresour Technol 98(18):3622–3629PubMedCrossRefPubMedCentralGoogle Scholar
  341. Singh A, Kuhad RC, Ward OP (2009) Advances in applied bioremediation. Springer, BerlinCrossRefGoogle Scholar
  342. Singh A, Kumar D, Gaur JP (2012) Continuous metal removal from solution and industrial effluents using Spirogyra biomass-packed column reactor. Water Res 46(3):779–788PubMedCrossRefPubMedCentralGoogle Scholar
  343. Singh R, Manickam N, Mudiam MKR, Murthy RC, Misra V (2013) An integrated (nano-bio) technique for degradation of -HCH contaminated soil. J Hazard Mater 35:258–259Google Scholar
  344. Singh S, Parihar P, Singh R, Singh VP, Prasad SM (2015) Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and ionomics. Front Plant Sci 6:1143PubMedPubMedCentralGoogle Scholar
  345. Sinha RK, Valani D, Sinha S, Singh S, Heart S (2009) Bioremediation of contaminated sites, a low-cost nature’s biotechnology for environmental cleanup by versatile microbes, plants &earthworms. In: Solid waste management and environmental remediation. Nova Science Publishers. Isbn: 978-1-60741-761-763Google Scholar
  346. Soleimani M, Hajabbasi MA (2009) Bioaccumulation of nickel and lead by Bermuda grass (Cynodon dactylon) and tall fescue (Festuca arundinacea) from two contaminated soils. Cas Jo Environ Sci 7(2):59–70Google Scholar
  347. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21(8):914–919PubMedCrossRefGoogle Scholar
  348. Sonoki T, Kajita S, Ikeda S, Uesugi M, Tatsumi K, Katayama Y (2005) Transgenic tobacco expressing fungal laccase promotes the detoxification of environmental pollutants. Appl Microbiol Biotechnol 67:138–1342PubMedCrossRefGoogle Scholar
  349. Sreenivasulu C, Megharaj M, Venkateswarlu K, Naidu R (2012) Degradation of p-nitrophenol by immobilized cells of Bacillus spp. isolated from soil. Int Biodeter Biodegrad 68:24–27CrossRefGoogle Scholar
  350. Srinivasa Rao P, Kalyani S, Suresh Reddy KVN, Krishnaiah A (2005) Comparison of biosorption of nickel (II) and copper (II) ions from aqueous solution by sphaeroplea algae and acid treated sphaeroplea algae. Sep Sci Technol 40(15):3149–3165CrossRefGoogle Scholar
  351. Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick BR (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708PubMedCrossRefGoogle Scholar
  352. Sun GD, Jin JH, Xu Y, Zhong ZP, Liu Y, Liu ZP (2014) Isolation of a high molecular weight polycyclic aromatic hydrocarbon-degrading strain and its enhancing the removal of HMW-PAHs from heavily contaminated soil. Int Biodeter Biodegrad 90:23–28CrossRefGoogle Scholar
  353. Sundaramoorthy P, Chidambaram A, Ganesh KS, Unnikannan P, Baskaran L (2010) Chromium stress in paddy, (i) nutrient status of paddy under chromium stress; (ii) phytoremediation of chromium by aquatic and terrestrial weeds. CR Biol 333(8):597–607CrossRefGoogle Scholar
  354. Sundberg SE, Ellington JJ, Evans JJ, Keys DA, Fisher JW (2002) Accumulation of perchlorate in tobacco plants: development of a plant kinetic model. J Environ Monit 5(3):505–512CrossRefGoogle Scholar
  355. Sung K, Munster CL, Rhykerd R, Drew MC, Corapcioglu MY (2003) The use of vegetation to remediate soil freshly contaminated by recalcitrant contaminants. Water Res 37:2408–2418PubMedCrossRefGoogle Scholar
  356. Suresh B, Ravishankar GA (2004) Phytoremediation-a novel and promising approach for environmental cleanup. Crit Rev Biotechnol 24:97–124PubMedCrossRefGoogle Scholar
  357. Suresh B, Sherkhane PD, Kale S, Eapen S, Ravishankar GA (2005) Uptake and degradation of DDT by hairy root cultures of Cichorium intybus and Brassica juncea. Chemosphere 1(9):1288–1292CrossRefGoogle Scholar
  358. Takahashi M, Nakanishi H, Kawasaki S, Nishiawa NK, Mori S (2001) Enhanced tolerance of rice to low iron availability in alkaline soils using barley nicotinamine aminotransferase genes. Nat Biotechnol 19:466–469PubMedCrossRefGoogle Scholar
  359. Tang CS, Sun WH, Toma M, Robert FM, Jones RK (2004) Evaluation of agriculture-based phytoremediation in Pacific island ecosystems using trisector planters. Int J Phytoremed 6(1):17–33CrossRefGoogle Scholar
  360. Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181:1158–1162PubMedCrossRefPubMedCentralGoogle Scholar
  361. Thijs S, Sillen W, Rineau F, Weyens N, Vangronsveld J (2016) Towards an enhanced understanding of plant–microbiome interactions to improve phytoremediation: engineering the metaorganism. Front Microbiol 7:341PubMedPubMedCentralCrossRefGoogle Scholar
  362. Thomas JC, Davies EC, Malick FK, Endreszi C, Williams CR, Abbas M (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280PubMedCrossRefGoogle Scholar
  363. Tumi AF, Mihailović N, Gajić BA, Niketić M, Tomović G (2012) Comparative study of hyperaccumulation of nickel by Alyssum murale sl populations from the ultramafics of Serbia. Pol J Environ Stud 21(6):1855–1866Google Scholar
  364. Turchi A, Tamantini I, Camussi AM, Racchi ML (2012) Expression of a metallothionein A1 gene of Pisum sativum in white poplar enhances tolerance and accumulation of zinc and copper. Plant Sci 183:50–56PubMedCrossRefPubMedCentralGoogle Scholar
  365. Turgut C, Pepe MK, Cutright TJ (2004) The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Environ Pollut 131:147–154PubMedCrossRefGoogle Scholar
  366. Tuzen M, Sari A (2010) Biosorption of selenium from aqueous solution by green algae (Cladophora hutchinsiae) biomass: equilibrium, thermodynamic and kinetic studies. Chem Eng J 158(2):200–206CrossRefGoogle Scholar
  367. Tuzen M, Sari A, Mendil D, Uluozlu OD, Soylak M, Dogan M (2009) Characterization of biosorption process of As(III) on green algae Ulothrix cylindricum. J Hazard Mater 165(1–3):566–572PubMedCrossRefPubMedCentralGoogle Scholar
  368. Tüzün I, Bayramoglu G, Yalçın E, Basaran G, Çelik G, Arıca MY (2005) Equilibrium and kinetic studies on biosorption of Hg (II), Cd (II) and Pb (II) ions onto microalgae Chlamydomonas reinhardtii. J Environ Manag 77(2):85–92CrossRefGoogle Scholar
  369. Uchida E, Ouchi T, Suzuki Y, Yoshida T, Habe H, Yamaguchi I (2005) Secretion of bacterial xenobiotic degrading enzymes from transgenic plants by an apoplastic expressional system: an applicability for phytoremediation. Environ Sci Technol 39:7671–7677PubMedCrossRefGoogle Scholar
  370. Ueno R, Wada S, Urano N (2008) Repeated batch cultivation of the hydrocarbon degrading, micro-algal strain Prototheca zopfii RND16 immobilized in polyurethane foam. Can J Microbiol 54:66–70PubMedCrossRefGoogle Scholar
  371. United States Environmental Protection Agency, USEPA (2000) Electrokinetic and phytoremediation in situ treatment of metal-contaminated soil: state-of-the-practice. Draft for Final Review. EPA/542/R-00/XXX. US Environmental Protection Agency, Office of Solid Waste and Emergency Response Technology Innovation Office, Washington, DCGoogle Scholar
  372. Unnikannan P, Baskaran L, Chidambaram ALA, Sundaramoorthy P (2013) Chromium phytotoxicity in tree species and its role on phytoremediation. Insight Bot 3:1):15–1):25Google Scholar
  373. Uroz S, Calvaruso C, Turpault MP, Frey Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387PubMedCrossRefGoogle Scholar
  374. Van Aken B, Yoon JM, Schnoor JL (2004) Biodegradation of nitro-substituted explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine and octahydro-1,3,5,7-tetranitro-1,3,5-tetrazocine by photosymbiotic Methylbacterium sp. associated with poplar tissues (Populus deltoids×nigra DN-34). Appl Environ Microbiol 70:508–517PubMedPubMedCentralCrossRefGoogle Scholar
  375. Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnen AN, Schat H, Verkleij JAC (1999) Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055PubMedPubMedCentralCrossRefGoogle Scholar
  376. Van Dillewijn P, Couselo JL, Corredoira E, Delgado E, Wittich RM, Ballester A (2008) Bioremediation of 2, 4, 6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410PubMedCrossRefGoogle Scholar
  377. Van Huysen T, Terry N, Pilon-Smits EA (2004) Exploring the selenium phytoremediation potential of transgenic Indian mustard overexpressing ATP sulfurylase or cystathione gamma synthase. Int J Phytoremed 6:111–118CrossRefGoogle Scholar
  378. Vandecasteele B, Meers E, Vervaeke P, De Vos B, Quataert P, Tack FM (2005) Growth and trace metal accumulation of two Salix clones on sediment-derived soils with increasing contamination levels. Chemosphere 58(8):995–1002PubMedCrossRefGoogle Scholar
  379. Vara Prasad MN, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321Google Scholar
  380. Vaseem H, Banerjee TK (2012) Phytoremediation of the toxic effluent generated during recovery of precious metals from polymetallic sea nodules. Int J Phytoremed 14:457–466CrossRefGoogle Scholar
  381. Verma S, Verma PK, Pande V, Tripathi RD, Chakrabarty D (2016) Transgenic Arabidopsis thaliana expressing fungal arsenic methyltransferase gene (WaarsM) showed enhanced arsenic tolerance via volatilization. Environ Exper Bot 132:113–120CrossRefGoogle Scholar
  382. Vernouillet G, Eullaffroy P, Lajeunesse A, Blaise C, Gagne F, Juneau P (2010) Toxic effects and bioaccumulation of carbamazepine evaluated by biomarkers measured in organisms of different trophic levels. Chemosphere 80:1062–1068PubMedCrossRefGoogle Scholar
  383. Viktorova J, Novakova M, Trbolova L, Vrchotova B, Lovecka P, Mackova M (2014) Characterization of transgenic tobacco plants containing bacterial bphc gene and study of their phytoremediation ability. Int J Phytoremed 16:937–946CrossRefGoogle Scholar
  384. Vogel M, Gunther A, Rossberg A, Li B, Bernhard G, Raff J (2010) Biosorption of U(VI) by the green algae Chlorella vulgaris in dependence of pH value and cell activity. Sci Total Environ 409(2):384–395PubMedCrossRefGoogle Scholar
  385. Wand H, Kuschk P, Soltmann U, Stottmeister U (2002) Enhanced removal of xenobiotics by helophytes. Biotechnol Acta 22:175–181CrossRefGoogle Scholar
  386. Wang L, Samac DA, Shapir A, Wackett LP, Vance CP, Olszewski NE (2005) Biodegradation of atrazine in transgenic plants expressing a modified bacterial atrazine chlorohydrolase (atzA) gene. Plant Biotech J 3:475–4786CrossRefGoogle Scholar
  387. Wang D, Li H, Hu F, Wang X (2007) Role of earthworm-straw interactions on phytoremediation of Cu contaminated soil by ryegrass. Acta Ecologica Sinica 27(4):1292–1298CrossRefGoogle Scholar
  388. Wang Q, Xie S, Hu R (2013) Bioaugmentation with Arthrobacter sp. strain DAT1 for remediation of heavily atrazine-contaminated soil. Int Biodeter Biodegrad 77:63–67CrossRefGoogle Scholar
  389. Wang Y, Ren H, Pan H, Liu J, Zhang L (2015) Enhanced tolerance and remediation to mixed contaminates of PCBs and 2,4-DCP by transgenic alfalfa plants expressing the 2,3-dihydroxybiphenyl-1,2-dioxygenase. J Hazard Mater 286:269–275PubMedCrossRefGoogle Scholar
  390. Wangeline AL, Burkhead JL, Hale KL, Lindblom SD, Terry N, Pilon M, Pilon-Smits EAH (2004) Overexpression of ATP sulfurylase in indian mustard. J Environ Qual 33(1):54–60PubMedCrossRefGoogle Scholar
  391. Warshawsky D, Cody T, Radike M, Reilman R, Schumann B, LaDow K, Schneider J (1995) Biotransformation of benzopyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem Biol Interact 97:131–148PubMedCrossRefGoogle Scholar
  392. Wenzel WW (2009) Rhizosphere processes and management in plant-assisted bioremediation (phytoremediation) of soils. Plant Soil 321:385–408CrossRefGoogle Scholar
  393. White PM, Wolf DC, Thoma GJ, Reynolds CM (2006) Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut 169:207–220CrossRefGoogle Scholar
  394. Wiessner A, Kappelmeyer U, Kaestner M, Schultze-Nobre L, Kuschk P (2013) Response of ammonium removal to growth and transpiration of juncus effusus during the treatment of artificial sewage in laboratory-scale wetlands. Water Res 47(13):4265–4273PubMedCrossRefGoogle Scholar
  395. Wilson-Corral V, Anderson CWN, Rodriguez-Lopez M (2012) Gold phytomining. A review of the relevance of this technology to mineral extraction in the 21st century. J Environ Manag 111:249–257CrossRefGoogle Scholar
  396. Wong JPK, Wong YS, Tam NFY (2000) Nickel biosorption by two chlorella species, C. Vulgaris (a commercial species) and C. Miniata (a local isolate). Bioresour Technol 73(2):133–137CrossRefGoogle Scholar
  397. Xiao S, Gao W, Chen QF, Ramalingam S, Chye ML (2008) Overexpression of membrane-associated acyl-CoA-binding protein ACBP1 enhances lead tolerance in Arabidopsis. Plant J 54(1):141–151PubMedCrossRefGoogle Scholar
  398. Xu Y, Zhou NY (2017) Microbial remediation of aromatics-contaminated soil. Front Env Sci Eng 11:1Google Scholar
  399. Xu C, Zang X, Hang X, Liu X, Yang H, Liu X, Jiang J (2017) Degradation of three monochlorobenzoate isomers by different bacteria isolated from a contaminated soil. Int Biodeter Biodegrad 120:192–202CrossRefGoogle Scholar
  400. Yadav BK, Siebel MA, Van Bruggen JJ (2011) Rhizofiltration of a heavy metal (lead) containing wastewater using the wetland plant Carex pendula. Clean: Soil, Air, Water 39(5):467–474Google Scholar
  401. Yang CW, Chen WZ, Chang BV (2017) Biodegradation of tetrabromobisphenol-A in sludge with spent mushroom compost. Int Biodeter Biodegrad 119:387–395CrossRefGoogle Scholar
  402. Yaqub A, Mughal M, Adnan A, Khan W, Anjum K (2012) Biosorption of hexavalent chromium by Spirogyra spp.: equilibrium, kinetics and thermodynamics. J Anim Plant Sci 22(2):408–415Google Scholar
  403. Yoon JM, Oh BT, Just CL, Schnoor JL (2002) Uptake and leaching of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine by hybrid poplar trees. Environ Sci Technol 36:4649–4655PubMedCrossRefGoogle Scholar
  404. Yoon JM, Oliver DJ, Shanks JV (2006) Phytoremediation of 2,4-dinitrotoluene in Arabidopsis thaliana: toxicity, fate and gene expression studies in vitro. Biotechnol Prog 22:1524–1531PubMedCrossRefGoogle Scholar
  405. Yuan Y, Yu S, Bañuelos GS, He Y (2016) Accumulation of Cr, Cd, Pb, Cu, and Zn by plants in tanning sludge storage sites: opportunities for contamination bioindication and phytoremediation. Environ Sci Pollut Res 23:22477–22487CrossRefGoogle Scholar
  406. Zeroual Y, Moutaouakkil A, Zohra Dzairi F, Talbi M, Ung Chung P, Lee K, Blaghen M (2003) Biosorption of mercury from aqueous solution by Ulva lactuca biomass. Bioresour Technol 90(3):349–351PubMedCrossRefGoogle Scholar
  407. Zhang C, Hughes JB (2003) Biodegradation pathways of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) by Clostridium acetobutylicum cell-free extract. Chemosphere 50(5):665–671PubMedCrossRefGoogle Scholar
  408. Zhang Y, Liu J (2011) Transgenic alfalfa plants co-expressing glutathione S-transferase (GST) and human CYP2E1 show enhanced resistance to mixed contaminates of heavy metals and organic pollutants. J Hazard Mater 189(1):357–362PubMedCrossRefGoogle Scholar
  409. Zhang Y, Zhao L, Wang Y, Yang B, Chen S (2008) Enhancement of heavy metal accumulation by tissue specific co-expression of iaaM and ACC deaminase genes in plants. Chemosphere 72:564–571PubMedCrossRefGoogle Scholar
  410. Zhang S, Qiu CB, Zhou Y, Jin ZP, Yang H (2011) Bioaccumulation and degradation of pesticide fluroxypyr are associated with toxic tolerance in green alga Chlamydomonas reinhardtii. Ecotoxicol 20:337–347CrossRefGoogle Scholar
  411. Zhang Y, Liu J, Zhou Y, Gong T, Wang J, Ge Y (2013) Enhanced phytoremediation of mixed heavy metal (mercury)-organic pollutants (trichloroethylene) with transgenic alfalfa co-expressing glutathione S-transferase and human P450 2E1. J Hazard Mater 260:1100–1107PubMedCrossRefGoogle Scholar
  412. Zhou H, Wang H, Huang Y, Fang T (2016) Characterization of pyrene degradation by halophilic Thalassospira sp. strain TSL5-1 isolated from the coastal soil of Yellow Sea, China. Int Biodeter Biodegrad 107:62–69CrossRefGoogle Scholar
  413. Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79CrossRefGoogle Scholar
  414. Zhu Y, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcysteine synthetase. Plant Physiol 121:1169–1177PubMedPubMedCentralCrossRefGoogle Scholar
  415. Zohar S, Kviatkovski I, Masaphy S (2013) Increasing tolerance to and degradation of high p-nitrophenol concentrations by inoculum size manipulations of Arthrobacter 4Hβ isolated from agricultural soil. Int Biodeter Biodegrad 84:80–85CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Bhupendra Koul
    • 1
  • Pooja Taak
    • 1
  1. 1.School of Bioengineering & BiosciencesLovely Professional UniversityPhagwaraIndia

Personalised recommendations