Advertisement

Development of Various Industrial Lime Sludge Waste-Filled Hybrid Polymeric Composites for Environmental Sustainability

  • Satadru KashyapEmail author
  • Dilip Datta
Chapter
Part of the Materials Horizons: From Nature to Nanomaterials book series (MHFNN)

Abstract

A potentially hazardous industrial waste material in our society is lime sludge which is sourced mainly from various industries (fertilizer, paper, sugar and soda ash) and generally disposed off in dumpyards or used in unauthorized land filling—both causing pollution. Hence, an alternative idea of environmental sustainability is by reusing lime sludge as reinforcing agent in polymeric composites. In this line of thought, lime sludge waste is used as filler in HDPE and epoxy matrices in order to investigate the effects of lime sludge on its composite properties. This would ultimately, throw light on the feasibility and commercial viability of lime sludge reuse in polymeric composites. Mechanical properties of HDPE composites are studied with maleic anhydride-grafted polyethylene (MAPE) as compatibilizer for effective adhesion at the filler/matrix boundary. Lime sludge waste was also used as filler in conjunction with randomly dispersed short coir fibre reinforced HDPE composites along with 5 wt% MAPE as compatibilizer. It is observed the properties such as flexural strength and mechanical rigidity (tensile and flexural) of the lime sludge infused composites improved with filler addition. The tensile strength increased up to 20 wt% filler addition due to effective reinforcement; however, beyond that the tensile strength decreased due to particle agglomeration. Additionally, lime sludge is used as filler in short and long coir fibre added epoxy composites. It is found that lime sludge content of 6 wt% results in superior tensile strength in coir fibre reinforced epoxy composites. In general, lime sludge is found to improve the bending strength and mechanical rigidity (tensile and flexural modulus) with increasing filler weight fraction. Thus, the reuse of lime sludge filler in polymeric composites not only results in the enhancement of various mechanical properties, but also reduces pollution, decreases the cost of the composites and improves the commercial viability of lime sludge waste.

Bibliography

  1. 1.
    Assessment of utilization of industrial solid wastes in cement manufacturing (2006) Technical report on programme objective series PROBES/103/2006–2007. Central Pollution Control Board (Govt. of India)Google Scholar
  2. 2.
    Wiegand PS, Unwin JP (1994) Alternative management of pulp and paper in-dustry solid wastes. Tappi J 77(4):91–97Google Scholar
  3. 3.
    Torkashvand AM, Haghighat N, Shadparvar V (2010) Effect of paper mill lime sludge as an acid soil amendment. Sci Res Essays 5(11):130–1306Google Scholar
  4. 4.
    Evanylo GK, Daniels WL (1999) Paper mill sludge composting and compost utilization. Compos Sci Utilization 7(2):30–39CrossRefGoogle Scholar
  5. 5.
    Kwon S, Kim KJ, Kim H, Kundu PP, Kim TJ, Lee YK, Lee BH, Choe S (2002) Tensile property and interfacial dewetting in the calcite filled HDPE, LDPE, and LLDPE composites. Polymer 43(25):6901–6909CrossRefGoogle Scholar
  6. 6.
    Bartczak Z, Argon A, Cohen R, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40(9):2347–2365CrossRefGoogle Scholar
  7. 7.
    Zuiderduin W, Westzaan C, Huetink J, Gaymans R (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44(1):261–275CrossRefGoogle Scholar
  8. 8.
    Kim KJ, White JL, Shim SE, Choe S (2004) Effects of stearic acid coated talc, CaCO3, and mixed talc/CaCO3 particles on the rheological properties of polypropylene compounds. J Appl Polym Sci 93(5):2105–2113CrossRefGoogle Scholar
  9. 9.
    Kim HS, Lee BH, Choi SW, Kim S, Kim HJ (2007) The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites. Compos A Appl Sci Manuf 38(6):1473–1482CrossRefGoogle Scholar
  10. 10.
    Yang HS, Kim HJ, Park HJ, Lee BJ, Hwang TS (2007) Effect of compatibilizing agents on rice-husk flour reinforced polypropylene composites. Compos Struct 77(1):45–55CrossRefGoogle Scholar
  11. 11.
    Kashyap S, Datta D (2017) Industrial Lime Sludge waste–HDPE composites— a study of their mechanical, thermal, and morphological properties. J Thermoplast Compos Mater.  https://doi.org/10.1177/0892705717738289CrossRefGoogle Scholar
  12. 12.
    Kashyap S, Datta D (2018) Evaluation of stearic acid modified industrial lime sludge waste as a filler in high density polyethylene composites. J Polym Eng 38(4):333–341CrossRefGoogle Scholar
  13. 13.
    Acha BA, Aranguren MI, Marcovich NE, Reboredo MM (2003) Composites from PMMA modified thermosets and chemically treated wood flour. Polym Eng Sci 43(5):999–1010CrossRefGoogle Scholar
  14. 14.
    Aziz SH, Ansell MP, Clarke SJ, Panteny SR (2005) Modified polyester resins for natural fibre composites. Compos Sci Technol 65(3):525–535CrossRefGoogle Scholar
  15. 15.
    Wu CS (2005) Improving polylactide/starch biocomposites by grafting polylactide with acrylic acid–characterization and biodegradability assessment. Macromol Biosci 5(4):352–361CrossRefGoogle Scholar
  16. 16.
    Martí-Ferrer F, Vilaplana F, Ribes-Greus A, Benedito-Borrás A, Sanz-Box C (2006) Flour rice husk as filler in block copolymer polypropylene: effect of different coupling agents. J Appl Polym Sci 99(4):1823–1831Google Scholar
  17. 17.
    Tserki V, Matzinos P, Panayiotou C (2006) Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part II. Development of biodegradable composites using treated and compatibilized waste flour. Compos A Appl Sci Manuf 37(9):1231–1238CrossRefGoogle Scholar
  18. 18.
    Fan L, Dang Z, Nan CW, Li M (2002) Thermal, electrical and mechanical properties of plasticized polymer electrolytes based on PEO/P (VDF-HFP) blends. Electrochim Acta 48(2):205–209CrossRefGoogle Scholar
  19. 19.
    Kim YD, Oh NL, Oh ST, Moon IH (2001) Thermal conductivity of W-Cu composites at various temperatures. Mater Lett 51(5):420–424CrossRefGoogle Scholar
  20. 20.
    Gracia R, Evans RE, Palmer RJ, Johnson NJ (1987) Toughened composites. STP 937:397–412Google Scholar
  21. 21.
    Liau JY, Jang BZ, Hwang LR, Wilcox RC (1988) Toughening composites by matrix modification. Plast Eng 44(11):33Google Scholar
  22. 22.
    Bijwe J, Logani CM, Tewari US (1990) Influence of fillers and fibre reinforcement on abrasive wear resistance of some polymeric composites. Wear 138(1–2):77–92CrossRefGoogle Scholar
  23. 23.
    Wang J, Gu M, Songhao B, Ge S (2003) Investigation of the influence of MoS2 filler on the tribological properties of carbon fiber reinforced nylon 1010 composites. Wear 255(1–6):774–779CrossRefGoogle Scholar
  24. 24.
    Mir SS, Nafsin N, Hasan M, Hasan N, Hassan A (2013) Improvement of physico-mechanical properties of coir-polypropylene biocomposites by fiber chemical treatment. Mater Des 52:251–257CrossRefGoogle Scholar
  25. 25.
    Nam TH, Ogihara S, Tung NH, Kobayashi S (2011) Effect of alkali treatment on interfacial and mechanical properties of coir fiber reinforced poly (butylene succinate) biodegradable composites. Compos B Eng 42(6):1648–1656CrossRefGoogle Scholar
  26. 26.
    Salmah H, Ruzaidi CM, Supri AG (2009) Compatibilisation of polypropylene/ethylene propylene diene terpolymer/kaolin composites: the effect of maleic anhydride-grafted-polypropylene. J Phys Sci 20(1):99–107Google Scholar
  27. 27.
    Zhou Z, Xu M, Yang Z, Li X, Shao D (2014) Effect of maleic anhydride grafted polyethylene on the properties of chopped carbon fiber/wood plastic composites. J Reinf Plast Compos 33(13):1216–1225CrossRefGoogle Scholar
  28. 28.
    Satyanarayana KG, Guimarães JL, Wypych F (2007) Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Compos Part A: Appl Sci Manuf 38(7):1694–1709Google Scholar
  29. 29.
    Jayabal S, Sathiyamurthy S, Loganathan KT, Kalyanasundaram S (2012) Effect of soaking time and concentration of NaOH solution on mechanical properties of coir–polyester composites. Bull Mater Sci 35(4):567–574CrossRefGoogle Scholar
  30. 30.
    Morandim-Giannetti AA, Agnelli JAM, Lanças BZ, Magnabosco R, Casarin SA, Bettini SHP (2012) Lignin as additive in polypropylene/coir composites: Thermal, mechanical and morphological properties. Carbohydr Polym 87(4):2563–2568Google Scholar
  31. 31.
    Lei Y, Wu Q, Yao F, Xu Y (2007) Preparation and properties of recycled HDPE/natural fiber composites. Compos A Appl Sci Manuf 38(7):1664–1674CrossRefGoogle Scholar
  32. 32.
    Yao F, Wu Q, Lei Y, Xu Y (2008) Rice straw fiber-reinforced high-density polyethylene composite: Effect of fiber type and loading. Ind Crops Prod 28(1):63–72CrossRefGoogle Scholar
  33. 33.
    Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polym 12(7):919CrossRefGoogle Scholar
  34. 34.
    Rozman HD, Tay GS, Kumar RN, Abubakar A, Ismail H, Ishak ZAM (1999) Polypropylene hybrid composites: a preliminary study on the use of glass and coconut fiber as reinforcements in polypropylene composites. Polym-Plas Technol Eng 38(5):997–1011CrossRefGoogle Scholar
  35. 35.
    Bettini SHP, Bicudo ABLC, Augusto IS, Antunes LA, Morassi PL, Condotta R, Bonse BC (2010) Investigation on the use of coir fiber as alternative reinforcement in polypropylene. J Appl Polym Sci 118(5):2841–2848CrossRefGoogle Scholar
  36. 36.
    Brahmakumar M, Pavithran C, Pillai RM (2005) Coconut fibre reinforced polyethylene composites: effect of natural waxy surface layer of the fibre on fibre/matrix interfacial bonding and strength of composites. Compos Sci Technol 65(3–4):563–569CrossRefGoogle Scholar
  37. 37.
    Biswal M, Mohanty S, Nayak SK (2009) Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites. J Appl Polym Sci 114(6):4091–4103CrossRefGoogle Scholar
  38. 38.
    Nayak SK, Mohanty S, Samal SK (2010) Influence of interfacial adhesion on the structural and mechanical behavior of PP-banana/glass hybrid composites. Polym Compos 31(7):1247–1257Google Scholar
  39. 39.
    Satapathy S, Nando GB, Jose J, Nag A (2008) Mechanical properties and fracture behavior of short pet fiber-waste polyethylene composites. J Reinf Plast Compos 27(9):967–984CrossRefGoogle Scholar
  40. 40.
    Satapathy S, Nando GB, Nag A, Raju KVSN (2013) HDPE-fly ash/nano fly ash Composites. J Appl Polym Sci 130(6):4558–4567Google Scholar
  41. 41.
    Satapathy S, Nag A, Nando GB (2012) Effect of electron beam irradiation on the mechanical, thermal, and dynamic mechanical properties of fly-ash and nanostructured fly ash waste polyethylene hybrid composites. Polym Compos 33(1):109–119CrossRefGoogle Scholar
  42. 42.
    Pardo SG, Bernal C, Ares A, Abad MJ, Cano J (2010) Rheological, thermal, and mechanical characterization of fly ash-thermoplastic composites with different coupling agents. Polym Compos 31(10):1722–1730CrossRefGoogle Scholar
  43. 43.
    Satapathy S, Kothapalli RVS (2018) Mechanical, dynamic mechanical and thermal properties of banana fiber/recycled high density polyethylene biocomposites filled with flyash cenospheres. J Polym Environ 26(1):200–213CrossRefGoogle Scholar
  44. 44.
    Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinf Plast Compos 28(10):1169–1189CrossRefGoogle Scholar
  45. 45.
    Ramprasath R, Jayabal S (2016) Particle swarm and simulated annealing based intuitive search optimization of flexural behaviors in bioparticles impregnated coir fiber–vinyl ester composites. Polym Compos 37(6):1765–1774CrossRefGoogle Scholar
  46. 46.
    Rajamuneeswaran S, Jayabal S (2016) A lexicographic multi objective genetic algorithm for optimization of mechanical properties of crab carapace impregnated coir–polyester composites. Polym Compos 37(3):844–853CrossRefGoogle Scholar
  47. 47.
    Matějka V, Fu Z, Kukutschová J, Qi S, Jiang S, Zhang X, Yun R, Vaculík M, Heliová M, Lu Y (2013) Jute fibers and powderized hazelnut shells as natural fillers in non-asbestos organic non-metallic friction composites. Mater Des 51:847–853Google Scholar
  48. 48.
    Aldousiri B, Alajmi M, Shalwan A (2013) Mechanical properties of palm fibre reinforced recycled HDPE. Adv Mater Sci Eng 2013:1–7Google Scholar
  49. 49.
    Yao Z, Xia M, Ge L, Chen T, Li H, Ye Y, Zheng H (2014) Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers Polym 15(6):1278–1287CrossRefGoogle Scholar
  50. 50.
    Muthu J, Priscilla J, Odeshi A, Kuppen N (2017) Characterisation of coir fibre hybrid composites reinforced with clay particles and glass spheres. J Compos Mater 0:1–15.  https://doi.org/10.1177/0021998317712568
  51. 51.
    Khademieslam H, Kalagar M (2016) Evaluation of the bending strength, impact strength, and morphological properties of wheat straw fiber/paper mill sludge/polypropylene composites. BioResources 11(2):3914–3922CrossRefGoogle Scholar
  52. 52.
    Knight GW (1996) Polyethylene. In: Polymer toughening, Marcel! Dekker Inc, Monticello, NY 12701-5185, USA, pp 189–235Google Scholar
  53. 53.
    Leong Y, Bakar A, Ishak Z, Ariffin A, Pukanszky B (2004) Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J Appl Polym Sci 91(5):3315–3326CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringTezpur UniversityNapaamIndia

Personalised recommendations