Advertisement

Literature Review

  • Yvonne Ho
Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

This chapter presents the prior work on Artificial Pancreas development including current clinical trials, development and research direction. The literature related to control schemes and physiological models are reviewed.

References

  1. 1.
    A.H. Clemens, P.H. Chang, R.W. Myers, The development of Biostator, a glucose controlled insulin infusion system (GCIIS). Hormone Metab. Res. 7, 23–33 (1977)Google Scholar
  2. 2.
    T. Yatabe, R. Yamazaki, H. Kitagawa, T. Okabayashi, K. Yamashita, K. Hanazaki, M. Yokoyama, The evaluation of the ability of closed-loop glycemic control device to maintain the blood glucose concentration in intensive care unit patients. Crit. Care Med. 39(3) (2011)CrossRefGoogle Scholar
  3. 3.
    J.V. Santiago, A.H. Clemens, W.L. Clarke, D.M. Kipnis, Closed-loop and open-loop devices for blood glucose control in normal and diabetic subjects. Diabetes 28(1), 71–84 (1978)CrossRefGoogle Scholar
  4. 4.
    C. Cobelli, E. Renard, B. Kovatchev, Artificial pancreas: past, present, future. Diabetes 60(11), 2672–2682 (2011)CrossRefGoogle Scholar
  5. 5.
    C. Cobelli, C.D. Man, G. Sparacino, L. Magni, G.D. Nicolao, B.P. Kovatchev, Diabetes models signals and control. IEEE Rev. Biomed. Eng. 2, 54–96 (2009)CrossRefGoogle Scholar
  6. 6.
    G. De Nicolao, L. Magni, C. Dalla Man, C. Cobelli, Modeling and control of diabetes: towards the artificial pancreas. World Congress 18(1), 7092–7101 (2011)Google Scholar
  7. 7.
    R. Hovorka, The future of continuous glucose monitoring: closed loop. Curr. Diabetes Rev. 4(3), 269–79 (2008)CrossRefGoogle Scholar
  8. 8.
    M.I. de Bock, A. Roy, M.N. Cooper, J.A. Dart, C.L. Berthold, A.J. Retterath, K.E. Freeman, B. Grosman, N. Kurtz, F. Kaufman, T.W. Jones, E.A. Davis, Feasibility of outpatient 24-hour closed-loop insulin delivery. Diabetes Care 38(11), e186–e187 (2015)CrossRefGoogle Scholar
  9. 9.
    C. Cobelli, E. Renard, B.P. Kovatchev, P. Keith-Hynes, N. Ben Brahim, J. Place, S. Del Favero, M. Breton, A. Farret, D. Bruttomesso, E. Dassau, H. Zisser, F.J. Doyle, S.D. Patek, A. Avogaro, Pilot studies of wearable outpatient artificial pancreas in type 1 diabetes. Diabetes Care 35(9), e65–e67 (2012)CrossRefGoogle Scholar
  10. 10.
    B.P. Kovatchev, E. Renard, C. Cobelli, H.C. Zisser, P. Keith-Hynes, S.M. Anderson, S.A. Brown, D.R. Chernavvsky, M.D. Breton, A. Farret, M.-J. Pelletier, J. Place, D. Bruttomesso, S. Del Favero, R. Visentin, A. Filippi, R. Scotton, A. Avogaro, F.J. Doyle, Feasibility of outpatient fully integrated closed-loop control: first studies of wearable artificial pancreas. Diabetes Care 36(7), 1851–1858 (2013)CrossRefGoogle Scholar
  11. 11.
    B.P. Kovatchev, E. Renard, C. Cobelli, H.C. Zisser, P. Keith-Hynes, S.M. Anderson, S.A. Brown, D.R. Chernavvsky, M.D. Breton, L.B. Mize, A. Farret, J. Place, D. Bruttomesso, S. Del Favero, F. Boscari, S. Galasso, A. Avogaro, L. Magni, F. Di Palma, C. Toffanin, M. Messori, E. Dassau, F.J. Doyle 3rd, Safety of outpatient closed-loop control: first randomized crossover trials of a wearable artificial pancreas. Diabetes Care 37(7), 1789–1796 (2014)CrossRefGoogle Scholar
  12. 12.
    C. Toffanin, M. Messori, F.D. Palma, G.D. Nicolao, C. Cobelli, L. Magni, Artificial pancreas: model predictive control design from clinical experience. J. Diabetes Sci. Technol. 7(6), 1470–1483 (2013)CrossRefGoogle Scholar
  13. 13.
    D. Elleri, J.M. Allen, M. Nodale, M.E. Wilinska, J.S. Mangat, A.M.F. Larsen, C.L. Acerini, D.B. Dunger, R. Hovorka, Automated overnight closed-loop glucose control in young children with type 1 diabetes. Diabetes Technol. Therap. 13(4), 419–424 (2011)CrossRefGoogle Scholar
  14. 14.
    R. Hovorka, D. Elleri, H. Thabit, J.M. Allen, L. Leelarathna, R. El-Khairi, K. Kumareswaran, K. Caldwell, P. Calhoun, C. Kollman, H.R. Murphy, C.L. Acerini, M.E. Wilinska, M. Nodale, D.B. Dunger, Overnight closed-loop insulin delivery in young people with type 1 diabetes: a free-living, randomized clinical trial. Diabetes Care 37(5), 1204–1211 (2014)CrossRefGoogle Scholar
  15. 15.
    D. Elleri, J.M. Allen, M. Biagioni, K. Kumareswaran, L. Leelarathna, K. Caldwell, M. Nodale, M.E. Wilinska, C.L. Acerini, D.B. Dunger, R. Hovorka, Evaluation of a portable ambulatory prototype for automated overnight closed-loop insulin delivery in young people with type 1 diabetes. Pediatr. Diabetes 13(6), 449–453 (2012)CrossRefGoogle Scholar
  16. 16.
    R. Hovorka, F. Shojaee-Moradie, P.V. Carroll, L.J. Chassin, I.J. Gowrie, N.C. Jackson, R.S. Tudor, A.M. Umpleby, R.H. Jones, Partitioning glucose distribution/transport, disposal, and endogenous production during IVGTT. Am. J. Physiol. Endocrinol. Metab. 282(5), E992–E1007 (2002)CrossRefGoogle Scholar
  17. 17.
    R. Hovorka, V. Canonico, L.J. Chassin, U. Haueter, M. Massi-Benedetti, M. Orsini Federici, T.R. Pieber, H.C. Schaller, L. Schaupp, T. Vering, M.E. Wilinska, Nonlinear model predictive control of glucose concentration in subjects with type 1 diabetes. Physiol. Measure. 25(4), 905–920 (2004)CrossRefGoogle Scholar
  18. 18.
    M. Breton, A. Farret, D. Bruttomesso, S. Anderson, L. Magni, S. Patek, C. Dalla Man, J. Place, S. Demartini, S. Del Favero, C. Toffanin, C. Hughes-Karvetski, E. Dassau, H. Zisser, F.J. Doyle, 3rd, G. De Nicolao, A. Avogaro, C. Cobelli, E. Renard, B. Kovatchev, Fully integrated artificial pancreas in type 1 diabetes: modular closed-loop glucose control maintains near normoglycemia. Diabetes 61(9), 2230–2237 (2012)CrossRefGoogle Scholar
  19. 19.
    S.J. Russell, F.H. El-Khatib, M. Sinha, K.L. Magyar, K. McKeon, L.G. Goergen, C. Balliro, M.A. Hillard, D.M. Nathan, E.R. Damiano, Outpatient glycemic control with a bionic pancreas in type 1 diabetes. New Engl. J. Med. 371(4), 313–325 (2014)CrossRefGoogle Scholar
  20. 20.
    S.J. Russell, F.H. El-Khatib, D.M. Nathan, K.L. Magyar, J. Jiang, E.R. Damiano, Blood glucose control in type 1 diabetes with a bihormonal bionic endocrine pancreas. Diabetes Care 35(11), 2148–2155 (2012)CrossRefGoogle Scholar
  21. 21.
    F.H. El-Khatib, S.J. Russell, D.M. Nathan, R.G. Sutherlin, E.R. Damiano, A bihormonal closed-loop artificial pancreas for type 1 diabetes. Sci. Transl. Med. 2(27), 27ra27–27ra27 (2010)CrossRefGoogle Scholar
  22. 22.
    F.H. El-Khatib, J. Jiang, E.R. Damiano, Adaptive closed-loop control provides blood-glucose regulation using dual subcutaneous insulin and glucagon infusion in diabetic swine. J. Diabetes Sci. Technol. 1(2), 181–192 (2007)CrossRefGoogle Scholar
  23. 23.
    N.M. Farandos, A.K. Yetisen, M.J. Monteiro, C.R. Lowe, S.H. Yun, Contact lens sensors in ocular diagnostics. Adv. Healthc. Mat. 4(6), 792–810 (2015)CrossRefGoogle Scholar
  24. 24.
    M. Yamaguchi, M. Deguchi, J. Wakasugi, A. Komatsu, M. Okada, Flat-chip microanalytical enzyme sensor for salivary amylase activity, in 3rd IEEE/EMBS Special Topic Conference on Microtechnology in Medicine and Biology, 2005 (May 2005), pp. 49–52Google Scholar
  25. 25.
    S. Vaddiraju, D.J. Burgess, I. Tomazos, F.C. Jain, F. Papadimitrakopoulos, Technologies for continuous glucose monitoring: current problems and future promises. J. Diabetes Sci. Technol. 4(6), 1540–1562 (2010)CrossRefGoogle Scholar
  26. 26.
    J. Wang, Electrochemical glucose biosensors. Chem. Rev. 108(2), 814–25 (2008)CrossRefGoogle Scholar
  27. 27.
    K.E. Toghill, R.G. Compton, Electrochemical non-enzymatic glucose sensors: a perspective and an evaluation. Int. J. Electrochem. Sci. 5(9), 1246–1301 (2010)Google Scholar
  28. 28.
    D.A. Gough, L.S. Kumosa, T.L. Routh, J.T. Lin, J.Y. Lucisano, Function of an implanted tissue glucose sensor for more than 1 year in animals. Sci. Transl. Med. 2(42) (2010)CrossRefGoogle Scholar
  29. 29.
    H. Shibata, Y.J. Heo, T. Okitsu, Y. Matsunaga, T. Kawanishi, S. Takeuchi, Injectable hydrogel microbeads for fluorescence-based in vivo continuous glucose monitoring, in Proceedings of the National Academy of Sciences (2010)Google Scholar
  30. 30.
    Y.J. Heo, H. Shibata, T. Okitsu, T. Kawanishi, S. Takeuchi, Long-term in vivo glucose monitoring using fluorescent hydrogel fibers. Proc. Nat. Acad. Sci. 108(33), 13 399–13 403 (2011)Google Scholar
  31. 31.
    T. Bailey, A. Gulino, M.J. Higgins, J. Leach, A. Kamath, P.C. Simpson, Accuracy of a first-generation intravenous blood glucose monitoring system in subjects with diabetes mellitus: a multicenter study. J. Diabetes Sci. Technol. 7(6), 1484–1491 (2013)CrossRefGoogle Scholar
  32. 32.
    G.M. Steil, K. Rebrin, J. Mastrototaro, B. Bernaba, M.F. Saad, Determination of plasma glucose during rapid glucose excursions with a subcutaneous glucose sensor. Diabetes Technol. Therap. 5(1), 27–31 (2003)CrossRefGoogle Scholar
  33. 33.
    D.M. Bina, R.L. Anderson, M.L. Johnson, R.M. Bergenstal, D.M. Kendall, Clinical impact of prandial state, exercise, and site preparation on the equivalence of alternative-site blood glucose testing. Diabetes Care 26(4), 981–985 (2003)CrossRefGoogle Scholar
  34. 34.
    K. Rebrin, G.M. Steil, Can interstitial glucose assessment replace blood glucose measurements? Diabetes Technol. Therap. 2(3), 461–472 (2000)CrossRefGoogle Scholar
  35. 35.
    A. Facchinetti, G. Sparacino, C. Cobelli, Reconstruction of glucose in plasma from interstitial fluid continuous glucose monitoring data: role of sensor calibration. J. Diabetes Sci. Technol. 1(5), 617–23 (2007)CrossRefGoogle Scholar
  36. 36.
    A. Basu, S. Dube, M. Slama, I. Errazuriz, J.C. Amezcua, Y.C. Kudva, T. Peyser, R.E. Carter, C. Cobelli, R. Basu, Time lag of glucose from intravascular to interstitial compartment in humans. Diabetes 62(12), 4083–4087 (2013)CrossRefGoogle Scholar
  37. 37.
    E. Cengiz, W.V. Tamborlane, A tale of two compartments: interstitial versus blood glucose monitoring. Diabetes Technol. Therap. 11(Suppl 1), S–11–S–16 (2009)Google Scholar
  38. 38.
    J.L. Parkes, S.L. Slatin, S. Pardo, B.H. Ginsberg, A new consensus error grid to evaluate the clinical significance of inaccuracies in the measurement of blood glucose. Diabetes Care 23(8), 1143–1148 (2000)CrossRefGoogle Scholar
  39. 39.
    J.S. Krouwer, G.S. Cembrowski, A review of standards and statistics used to describe blood glucose monitor performance. J. Diabetes Sci. Technol. 4(1), 75–83 (2010)CrossRefGoogle Scholar
  40. 40.
    D.C. Klonoff, The need for clinical accuracy guidelines for blood glucose monitors. J. Diabetes Sci. Technol. 6(1), 1–4 (2012)CrossRefGoogle Scholar
  41. 41.
    American Diabetes Association, Standards of medical care in diabetes—2014. Diabetes Care 37(Supplement 1), S14–S80 (2014)CrossRefGoogle Scholar
  42. 42.
    B.W. Bode, J.B. McGill, D.L. Lorber, J.L. Gross, P.-C. Chang, D.B. Bregman, For the Affinity 1 Study Group, Inhaled technosphere insulin compared with injected prandial insulin in type 1 diabetes: a randomized 24-week trial. Diabetes Care (2015)Google Scholar
  43. 43.
    Y. Qiu, K. Park, Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 64(Supplement), 49–60 (2012)CrossRefGoogle Scholar
  44. 44.
    E. Renard, J. Place, M. Cantwell, H. Chevassus, C.C. Palerm, Closed-loop insulin delivery using a subcutaneous glucose sensor and intraperitoneal insulin delivery. Diabetes Care 33(1), 121–127 (2010)CrossRefGoogle Scholar
  45. 45.
    E. Renard, Insulin delivery route for the artificial pancreas: Subcutaneous, intraperitoneal, or intravenous? Pros and Cons. J. Diabetes Sci. Technol. 2(4), 735–738 (2008)CrossRefGoogle Scholar
  46. 46.
    D.J. Laser, J.G. Santiago, A review of micropumps. J. Micromech. Microeng. 14(6), R35 (2004)CrossRefGoogle Scholar
  47. 47.
    B.W. Bequette, A critical assessment of algorithms and challenges in the development of a closed-loop artificial pancreas. Diabetes Technol. Therap. 7(1), 28–47 (2005)CrossRefGoogle Scholar
  48. 48.
    R. Parker, F. Doyle, N. Peppas, The intravenous route to blood glucose control. Eng. Med. Biol. Mag. IEEE 20(1), 65–73 (2001)CrossRefGoogle Scholar
  49. 49.
    M. Fisher, A semiclosed-loop algorithm for the control of blood glucose levels in diabetics. IEEE Trans. Bio-Med. Eng. 38(1), 57–61 (1991)CrossRefGoogle Scholar
  50. 50.
    S.M. Furler, E.W. Kraegen, R.H. Smallwood, D.J. Chisholm, Blood glucose control by intermittent loop closure in the basal mode: computer simulation studies with a diabetic model. Diabetes Care 8(6), 553–561 (1985)CrossRefGoogle Scholar
  51. 51.
    D.J. Chisholm, E.W. Kraegen, D.J. Bell, D.R. Chipps, A semi-closed loop computer-assisted insulin infusion system. Hospital use for control of diabetes in patients. M. J. Aust. 141(12–13), 784–789 (1984)Google Scholar
  52. 52.
    Y. Wang, M.W. Percival, E. Dassau, H.C. Zisser, L. Jovanovič, F.J. Doyle 3rd, A novel adaptive basal therapy based on the value and rate of change of blood glucose. J. Diabetes Sci. Technol. 3(5), 1099–1108 (2009)CrossRefGoogle Scholar
  53. 53.
    S.A. Weinzimer, G.M. Steil, K.L. Swan, J. Dziura, N. Kurtz, W.V. Tamborlane, Fully automated closed-loop insulin delivery versus semiautomated hybrid control in pediatric patients with type 1 diabetes using an artificial pancreas. Diabetes Care 31(5), 934–939 (2008)CrossRefGoogle Scholar
  54. 54.
    G. Marchetti, M. Barolo, L. Jovanovič, H. Zisser, D.E. Seborg, A feedforward-feedback glucose control strategy for type 1 diabetes mellitus. J. Process Control 18(2), 149–162 (2008)CrossRefGoogle Scholar
  55. 55.
    C.E. Garcìa, D.M. Prett, M. Morari, Model predictive control: theory and practice—a survey. Automatica 25(3), 335–348 (1989)CrossRefGoogle Scholar
  56. 56.
    P. Soru, G.D. Nicolao, C. Toffanin, C.D. Man, C. Cobelli, L. Magni, MPC based artificial pancreas: strategies for individualization and meal compensation. Ann. Rev. Control 36(1), 118–128 (2012)CrossRefGoogle Scholar
  57. 57.
    C. Dalla Man, R.A. Rizza, C. Cobelli, Meal simulation model of the glucose-insulin system. IEEE Trans. Biomed. Eng. 54(10), 1740–1749 (2007)CrossRefGoogle Scholar
  58. 58.
    L. Magni, M. Forgione, C. Toffanin, C. Dalla Man, B. Kovatchev, G. De Nicolao, C. Cobelli, Run-to-run tuning of model predictive control for type 1 diabetes subjects: in silico trial. J. Diabetes Sci. Technol. 3(5), 1091–1098 (2009)CrossRefGoogle Scholar
  59. 59.
    S. Lynch, B. Bequette, Model predictive control of blood glucose in type i diabetics using subcutaneous glucose measurements, in Proceedings of the 2002 American Control Conference, vol. 5 (2002), pp. 4039–4043Google Scholar
  60. 60.
    E.D. Lehmann, T. Deutsch, A physiological model of glucose-insulin interaction in type 1 diabetes mellitus. J. Biomed. Eng. 14(3), 235–242 (1992)CrossRefGoogle Scholar
  61. 61.
    Z. Trajanoski, P. Wach, Neural predictive controller for insulin delivery using the subcutaneous route. IEEE Trans. Biomed. Eng. 45(9), 1122–1134 (1998)CrossRefGoogle Scholar
  62. 62.
    C. Cobelli, G. Federspil, G. Pacini, A. Salvan, C. Scandellari, An integrated mathematical model of the dynamics of blood glucose and its hormonal control. Math. Biosci. 58(1), 27–60 (1982)CrossRefGoogle Scholar
  63. 63.
    R.S. Parker, E.P. Gatzke, F.J. Doyle, Advanced model predictive control (mpc) for type i diabetic patient blood glucose control, in Proceedings of the 2000 American Control Conference, 2000., vol. 5 (2000), pp. 3483–3487Google Scholar
  64. 64.
    P. Dua, F. Doyle, E. Pistikopoulos, Multi-objective parametric control of blood glucose concentration for type 1 diabetes, in 44th IEEE Conference on Decision and Control, 2005 and 2005 European Control Conference. CDC-ECC ’05 (Dec 2005), pp. 885–890Google Scholar
  65. 65.
    K. Zhou, J.C. Doyle, K. Glover, Robust and Optimal Control (Prentice-Hall Inc, Upper Saddle River, NJ, USA, 1996)zbMATHGoogle Scholar
  66. 66.
    R.S. Parker, F.J. Doyle, J.H. Ward, N.A. Peppas, Robust h-infinity glucose control in diabetes using a physiological model. AIChE J. 46(12), 2537–2549 (2000)CrossRefGoogle Scholar
  67. 67.
    L. Kovács, B. Benyó, J. Bokor, Z. Benyó, Induced l2-norm minimization of glucoseinsulin system for type i diabetic patients. Comput. Methods Programs Biomed. 102(2), 105–118 (2011)CrossRefGoogle Scholar
  68. 68.
    F.H. El-Khatib, J. Jiang, E.R. Damiano, A feasibility study of bihormonal closed-loop blood glucose control using dual subcutaneous infusion of insulin and glucagon in ambulatory diabetic swine. J. Diabetes Sci. Technol. 3(4), 789–803 (2009)CrossRefGoogle Scholar
  69. 69.
    J.R. Castle, J.M. Engle, J. El Youssef, R.G. Massoud, K.C.J. Yuen, R. Kagan, W.K. Ward, Novel use of glucagon in a closed-loop system for prevention of hypoglycemia in type 1 diabetes. Diabetes Care 33(6), 1282–1287 (2010)CrossRefGoogle Scholar
  70. 70.
    D.W. Marquardt, An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Indust. Appl. Math. 11(2), 431–441 (1963)MathSciNetCrossRefGoogle Scholar
  71. 71.
    J. Nocedal, S. Wright, Numerical Optimization (Springer Science & Business Media, 2006)Google Scholar
  72. 72.
    M. Dorigo, V. Maniezzo, A. Colorni, Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man, Cybern. Part B (Cybernetics) 26(1), 29–41 (1996)CrossRefGoogle Scholar
  73. 73.
    C. Blum, X. Li, EnglishSwarm intelligence in optimization, in EnglishSwarm Intelligence, ser. Natural Computing Series, ed. by C. Blum, D. Merkle (Springer, Berlin, Heidelberg, 2008), pp. 43–85Google Scholar
  74. 74.
    D.B. Fogel, Evolutionary Computation: The Fossil Record, 1st edn. (Wiley-IEEE Press, 1998)Google Scholar
  75. 75.
    L. de Castro, F. Von Zuben, Learning and optimization using the clonal selection principle. IEEE Trans. Evolut. Comput. 6(3), 239–251 (2002)CrossRefGoogle Scholar
  76. 76.
    W. Lei, Q. Wu, Linear system parameters identification based on ant system algorithm, in Proceedings of the 2001 IEEE International Conference on Control Applications, 2001. (CCA ’01) (2001), pp. 401–406Google Scholar
  77. 77.
    J.T. Sorensen, A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes, in Ph.D. dissertation (Massachusetts Institute of Technology. Dept. of Chemical Engineering, 1985)Google Scholar
  78. 78.
    E. Lehmann, T. Deutsch, E. Carson, P. Sönksen, AIDA: an interactive diabetes advisor. Comput. Methods Program. Biomed. 41(3), 183–203 (1994)CrossRefGoogle Scholar
  79. 79.
    C. Dalla Man, D.M. Raimondo, R.A. Rizza, C. Cobelli, GIM, simulation software of meal glucose-insulin model. J. Diabetes Sci. Technol. 1(3), 323–330 (2007)CrossRefGoogle Scholar
  80. 80.
    C.D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, C. Cobelli, The UVA/PADOVA type 1 diabetes simulator: new features. J. Diabetes Sci. Technol. 8(1), 26–34 (2014)CrossRefGoogle Scholar
  81. 81.
    R.N. Bergman, L.S. Phillips, C. Cobelli, Physiologic evaluation of factors controlling glucose tolerance in man measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. J. Clin. Invest. 68(6), 1456–1467 (1981)CrossRefGoogle Scholar
  82. 82.
    R.N. Bergman, Y.Z. Ider, C.R. Bowden, C. Cobelli, Quantitative estimation of insulin sensitivity. Am. J. Physiol. 236(6), E667–E677 (1979)Google Scholar
  83. 83.
    M.D. Breton, Physical activity-the major unaccounted impediment to closed loop control. J. Diabetes Sci. Technol. 2(1), 169–174 (2008)CrossRefGoogle Scholar
  84. 84.
    C.D. Man, M.D. Breton, C. Cobelli, Physical activity into the meal glucose-insulin model of type 1 diabetes: in silico studies. J. Diabetes Sci. Technol. 3(1), 56–67 (2009)CrossRefGoogle Scholar
  85. 85.
    A. Roy, R.S. Parker, Dynamic modeling of exercise effects on plasma glucose and insulin levels. J. Diabetes Sci. Technol. 1(3), 338–347 (2007)CrossRefGoogle Scholar
  86. 86.
    E.D. Lehmann, T. Deutsch, Compartmental models for glycaemic prediction and decision-support in clinical diabetes care: promise and reality. Comput. Methods Programs Biomed. 56(2), 193–204 (1998)CrossRefGoogle Scholar
  87. 87.
    A. Saad, C. Dalla Man, D.K. Nandy, J.A. Levine, A.E. Bharucha, R.A. Rizza, R. Basu, R.E. Carter, C. Cobelli, Y.C. Kudva, A. Basu, Diurnal pattern to insulin secretion and insulin action in healthy individuals. Diabetes 61(11), 2691–2700 (2012)CrossRefGoogle Scholar
  88. 88.
    E. Carson, C. Cobelli, Modelling Methodology for Physiology and Medicine, ser (Academic Press Series in Biomedical Engineering, Elsevier Science, 2001)Google Scholar
  89. 89.
    M. Eren-Oruklu, A. Cinar, L. Quinn, D. Smith, Estimation of future glucose concentrations with subject-specific recursive linear models. Diabetes Technol. Therap. 11(4), 243–253 (2009)CrossRefGoogle Scholar
  90. 90.
    R. Gillis, C.C. Palerm, H. Zisser, L. Jovanovic, D.E. Seborg, F.J. Doyle, Glucose estimation and prediction through meal responses using ambulatory subject data for advisory mode model predictive control. J. Diabetes Sci. Technol. 1(6), 825–833 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational University of SingaporeSingaporeSingapore

Personalised recommendations