Advertisement

Production of Biofuel from Microalgae

  • Pratima Bajpai
Chapter
Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)

Abstract

Production of biofuel from microalgae is presented in this chapter. Biochemical Conversion (Anaerobic Digestion; Alcoholic Fermentation; Hydrogen production; Biodiesel production) and thermochemical conversion (Gasification; Hydrothermal liquefaction; Hydrothermal carbonization; Pyrolysis) processes are discussed.

Keywords

Biofuel Microalgae Biochemical conversion Anaerobic digestion Alcoholic fermentation Hydrogen production Biodiesel production Thermochemical conversion Gasification Hydrothermal liquefaction Hydrothermal carbonization Pyrolysis 

References

  1. Ackman RG, Tocher CS, McLachlan J (1968) Marine phytoplankter fatty acids. J Fish Res Board Can 25:1603–1620CrossRefGoogle Scholar
  2. Appels L, Baeyens J, Degrève J, Dewil R (2008) Principles and potential of the anaerobic digestion of waste-activated sludge. Prog Energy Combust Sci 34:755–781CrossRefGoogle Scholar
  3. Bala K, Kumar R, Deshmukh D (2014) Perspectives of microalgal biofuels as a renewable source of energy. Energy Convers Manag 88:1228–1244CrossRefGoogle Scholar
  4. Banerjee A, Harma RS, Chisti Y, Banerjee UC (2002) Botryococcus braunii: a renewable source of hydrocarbons and other chemicals. Crit Rev Biotechnol 22:245–279CrossRefGoogle Scholar
  5. Barnwal B, Sharma M (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sust Energ Rev 9:363–378CrossRefGoogle Scholar
  6. Behera S, Singh R, Arora R, Sharma NK, Shukla M, Kumar S (2015) Scope of algae as third generation biofuels, Frontiers in bioengineering and biotechnology. Mar Biotechnol 90(2):1–13Google Scholar
  7. Benemann JR, Pursoff P, Oswald WJ (1978) Engineering design and cost analysis of a large-scale microalgae biomass system. NTIS#H CP/T1605–01 UC-61. US Department of Energy, Washington DCGoogle Scholar
  8. Biller P, Ross AB (2011) Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresour Technol 102:215–225CrossRefGoogle Scholar
  9. Biomass R&D (2002) Technical advisory committee. Roadmap for biomass technologies in the United States, Washington, DC, USA. Available online: www.bioproducts-bioenergy.gov/pdfs/FinalBiomassRoadmap.pdf
  10. Bridgwater A (2007) IEA bioenergy 27th update. Biomass pyrolysis, biomass and bioenergy, vol 31. Pergamon-Elsevier Science Ltd., EnglandGoogle Scholar
  11. Bridgwater AV, Peacocke GVC (2000) Fast pyrolysis processes for biomass. Renew Sust Energ Rev 4:1–73CrossRefGoogle Scholar
  12. Burlew S (1953) Algal culture: from laboratory to pilot plant (publication no. 600). Carnegie Institution of Washington, Washington, DCGoogle Scholar
  13. Caliceti M, Argese E, Sfriso A, Pavoni B (2002) Heavy metal contamination in the seaweeds of the Venice lagoon. Chemosphere 47:443–454CrossRefGoogle Scholar
  14. Campanella A, Muncrief R, Harold MP, Griffith DC, Whitton NM, Weber RS (2012) Thermolysis of microalgae and duckweed in a CO2-swept fixed-bed reactor: bio-oil yield and compositional effects. Bioresour Technol 109:154–162CrossRefGoogle Scholar
  15. Castro YA, Ellis JT, Miller CD, Sims RC (2015) Optimization of wastewater microalgae saccharification using dilute acid hydrolysis for acetone, butanol, and ethanol fermentation. Appl Energy 2015(140):14–19CrossRefGoogle Scholar
  16. Chakinala AG, Brilman DWF, van Swaaij WPM, Kersten SRA (2010) Catalytic and non-catalytic supercritical water gasification of microalgae and glycerol. Ind Eng Chem Res 49:1113–1122CrossRefGoogle Scholar
  17. Chen CY, Chang HY, Chang JS (2016) Producing carbohydrate-rich microalgal biomass grown under mixotrophic conditions as feedstock for biohydrogen production. Int J Hydrog Energy 41:4413–4420CrossRefGoogle Scholar
  18. Chisti Y (2006) Microalgae as sustainable cell factories. Environ Eng Manag J 5:261–274CrossRefGoogle Scholar
  19. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  20. Clark JH, Deswarte F (2015) Introduction to chemicals from biomass. Wiley, HobokenGoogle Scholar
  21. Cohen E, Koren A, Arad SM (1991) A closed system for outdoor cultivation of microalgae. Biomass Bioenergy 1:83–88CrossRefGoogle Scholar
  22. Collyer DM, Fogg GE (1955) Studies of fat accumulation by algae. J Exp Bot 6:256–275CrossRefGoogle Scholar
  23. Coombs J, Darley WM, Holm-Hansen O, Volcani BE (1967) Studies on the biochemistry and fine structure of silica shell formation in diatoms. Chemical composition of Navicula pelliculosa during silicon starvation. Plant Physiol 42:1601–1606CrossRefGoogle Scholar
  24. Czernik S, Bridgwater AV (2004) Overview of applications of biomass fast pyrolysis oil. Energy Fuel 18:590–598CrossRefGoogle Scholar
  25. Demirbas A (2000) Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Convers Manag 41:633–646CrossRefGoogle Scholar
  26. Demirbas A (2001) Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy Convers Manag 42:1357–1378CrossRefGoogle Scholar
  27. Demirbas A (2006) Oily products from mosses and algae via pyrolysis. Energy Source Part A 28:933–940CrossRefGoogle Scholar
  28. Demirbas A (2007) Progress and recent trends in biofuels. Prog Energy Combust Sci 33:1–18CrossRefGoogle Scholar
  29. Demirbas A (2010a) Thermochemical processes. In: Biorefineries. Green energy and technology. Springer, LondonGoogle Scholar
  30. Demirbas A (2010b) Energy from algae, green energy and technology. Springer, LondonGoogle Scholar
  31. Demirbas MF (2010c) Microalgae as a feedstock for biodiesel. Energy Educ Sci Technol Part A 25:31–43Google Scholar
  32. Demirbas A (2010d) Use of algae as biofuel sources. Energy Convers Manag 51(12):2738–2749CrossRefGoogle Scholar
  33. Demirbas A, Demirbas F (2011) Importance of algae oil as a source of biodiesel. Energy Convers Manag 53:163–170.  https://doi.org/10.1016/j.enconman.2010.06.055 CrossRefzbMATHGoogle Scholar
  34. Dote Y, Sawayama S, Inoue S, Minowa T, Yokoyama SY (1994) Recovery of liquid fuel from hydrocarbon-rich microalgae by thermochemical liquefaction. Fuel 73:1855–1857CrossRefGoogle Scholar
  35. Du Z (2013) Thermochemical conversion of microalgae for biofuel production. Published doctoral dissertation, University of Minnesota, Twin CitiesGoogle Scholar
  36. Du Z, Mohr M, Ma X, Cheng Y, Lin X, Liu Y, Zhou W, Chen P, Ruan R, Bioresource Technology (2012) Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Bioresour Technol 120:13–18CrossRefGoogle Scholar
  37. Duan PG, Savage PE (2011) Hydrothermal liquefaction of a microalga with heterogeneous catalysts. Ind Eng Chem Res 50:52–61CrossRefGoogle Scholar
  38. Dudeja S, Bhattacherjee AB, Chela-Flores J (2012) Antarctica as model for the possible emergence of life on Europa. In: Hanslmeier A, Kempe S, Seckbach J (eds) Life on earth and other planetary bodies. Cellular origin and life in extreme habitats and astrobiology. Springer, DordrechtGoogle Scholar
  39. Ebadi AG, Hisoriev H, Zarnegar M, Ahmadi H (2018) Hydrogen and syngas production by catalytic gasification of algal biomass (Cladophora glomerata L.) using alkali and alkaline-earth metals compounds. Environ Technol 2:1–7.  https://doi.org/10.1080/09593330.2017.1417495 CrossRefGoogle Scholar
  40. Ellis JT, Hengge NN, Sims RC, Miller CD (2012) Acetone, butanol, and ethanol production from wastewater algae. Bioresour Technol 111:491–495CrossRefGoogle Scholar
  41. Eroglu E, Melis A (2016) Microalgal hydrogen production research. Int J Hydrog Energy 41:12772–12798CrossRefGoogle Scholar
  42. Fermoso J, Coronado JM, Serrano DP, Pizarro P (2017) Pyrolysis of microalgae for fuel production. In: Gonzalez-Fernandez C, Muñoz R (eds) Microalgae-based biofuels bioprod. Woodhead Publishing/Elsevier, Duxford, pp 259–282CrossRefGoogle Scholar
  43. Filipkowska A, Lubecki L, Szymczak-Żyła M, Kowalewska G, Żbikowski R, Szefer P (2008) Utilisation of macroalgae from the Sopot beach (Baltic Sea). Oceanologia 50:255–273Google Scholar
  44. Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 2001(92):405–416CrossRefGoogle Scholar
  45. Funke A, Ziegler F (2010) Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering. Biofuels Bioprod Biorefin 4:160–177CrossRefGoogle Scholar
  46. Gonzalez-Fernandez C, Mandy A, Ballesteros I, Ballesteros M (2016) Impact of temperature and photoperiod on anaerobic biodegradability of microalgae grown in urban wastewater. Int Biodeterior Biodegrad 106:16–23CrossRefGoogle Scholar
  47. Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36:269–274CrossRefGoogle Scholar
  48. Goyal H, Seal D, Saxena R (2008) Bio-fuels from thermochemical conversion of renewable resources: a review. Renew Sust Energ Rev 12:504–517CrossRefGoogle Scholar
  49. Gunaseelan VN (1997) Anaerobic digestion of biomass for methane production: a review. Biomass Bioenergy 13:83–114CrossRefGoogle Scholar
  50. Heilmann SM, Davis HT, Jader LR, Lefebvre PA, Sadowsky MJ, Schendel FJ, von Keitz MG, Valentas KJ (2010) Hydrothermal carbonization of microalgae. Biomass Bioenergy 34:875–882CrossRefGoogle Scholar
  51. Heilmann SM, Jader LR, Harned LA, Sadowsky MJ, Schendel FJ, Lefebvre PA, von Keitz MG, Valentas KJ (2011) Hydrothermal carbonization of microalgae II. Fatty acid, char, and algal nutrient products. Appl Energy 88:3286–3290CrossRefGoogle Scholar
  52. Hernandez D, Riano B, Coca M, Solana M, Bertucco A, Garcia-Gonzalez MC (2016) Microalgae cultivation in high rate algal ponds using slaughterhouse wastewater for biofuel applications. Chem Eng J 285:449–458CrossRefGoogle Scholar
  53. Hirano A, Hon-Nami K, Kunito S, Hada M, Ogushi Y (1998) Temperature effect on continuous gasification of microalgal biomass: theoretical yield of methanol production and its energy balance. Catal Today 45:399–404CrossRefGoogle Scholar
  54. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS (2013) Bioethanol production using carbohydrate-rich microalgae biomass as feedstock. Bioresour Technol 2013(135):191–198CrossRefGoogle Scholar
  55. Hönig V, Kotek M, Mařík J (2014) Use of butanol as a fuel for internal combustion engines. Agron Res 12(2):333–340Google Scholar
  56. Hromádko J, Hromádko J, Miler P, Hönig V, Štěrba P (2011) The use of bioethanol in internal combustion engines. Chemické listy 105(2):122–128 (in Czech)Google Scholar
  57. Jena U, Das KC (2011) Comparative evaluation of thermochemical liquefaction and pyrolysis for bio-oil production from microalgae. Energy Fuel 25:5472–5482CrossRefGoogle Scholar
  58. John RP, Anisha GS, Nampoothiri KM, Pandey A (2011) Micro and microalgal biomass: a renewable source for bioethanol. Bioresour Technol 102:186–193CrossRefGoogle Scholar
  59. Lakaniemi AM, Tuovinen OH, Puhakka JA (2013) Anaerobic conversion of microalgal biomass to sustainable energy carriers – a review. Bioresour Technol 135:222–231CrossRefGoogle Scholar
  60. Leite GB, Abdelaziz AE, Hallenbeck PC (2013) Algal biofuels: challenges and opportunities. Bioresour Technol 145:134–141CrossRefGoogle Scholar
  61. Leng L, Li J, Wen Z, Zhou W (2018) Use of microalgae to recycle nutrients in aqueous phase derived from hydrothermal liquefaction process. Bioresour Technol 256:529–542CrossRefGoogle Scholar
  62. Li CL, Fang HHP (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39MathSciNetCrossRefGoogle Scholar
  63. Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N (2008) Biofuels from microalgae. Biotechnol Prog 24(4):815–820Google Scholar
  64. Markou G, Angelidaki I, Nerantzis E, Georgakakis D (2013) Bioethanol production by carbohydrate-enriched biomass of Arthrospira (Spirulina) platensis. Energies 2013(6):3937–3950CrossRefGoogle Scholar
  65. Meier RL (1955) Biological cycles in the transformation of solar energy into useful fuels. In: Daniels F, Duffie JA (eds) Solar energy research. University of Wisconsin Press, Madison, pp 179–183Google Scholar
  66. Meier D, Faix O (1999) State of the art of applied fast pyrolysis of lignocellulosic materials – a review. Bioresour Technol 68:71–77CrossRefGoogle Scholar
  67. Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136CrossRefGoogle Scholar
  68. Mendez L, Mahdy A, Ballesteros M, Gonzalez-Fernandez C (2014) Methane production of thermally pretreated Chlorella vulgaris and Scenedesmus sp. biomass at increasing biomass loads. Appl Energy 129:238–242CrossRefGoogle Scholar
  69. Miao XL, Wu QY (2004) High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. J Biotechnol 110:85–93CrossRefGoogle Scholar
  70. Miao XL, Wu QY, Yang CY (2004) Fast pyrolysis of microalgae to produce renewable fuels. J Anal Appl Pyrolysis 71:855–863CrossRefGoogle Scholar
  71. Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78:1213–1215CrossRefGoogle Scholar
  72. Minowa T, Yokoyama SY, Kishimoto M, Okakura T (1995) Oil production from algal cells of Dunaliella tertiolecta by direct thermochemical liquefaction. Fuel 74:1735–1738CrossRefGoogle Scholar
  73. Miyake J (1990) Application of photosynthetic systems for energy conversion. In: Veziroglu TN, Takahashi PK (eds) Hydrogen energy progress. VIII. Proceedings 8th WHEC. Elsevier, New York, pp 755–764Google Scholar
  74. Mohan D, Pittman CU, Steele PH (2006) Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuel 20:848–889CrossRefGoogle Scholar
  75. Mužíková Z, Pospíšil M, Šebor G (2010) The use of bioethanol as a fuel in the form of E85 fuel. Chemické listy 104(7):678–683 (in Czech)Google Scholar
  76. Nichols BW (1965) Light induced changes in the lipids of Chlorella vulgaris. Biochim Biophys Acta 106:274–279CrossRefGoogle Scholar
  77. Ogi T, Yokoyama S, Minowa T, Dote Y (1990) Role of butanol solvent in direct liquefaction of wood. Sekiyu Gakkashi (J Japan Petr Inst) 33:383–389CrossRefGoogle Scholar
  78. Oswald WJ, Golueke C (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262CrossRefGoogle Scholar
  79. Pan P, Hu CW, Yang WY, Li YS, Dong LL, Zhu LF, Tong DM, Qing RW, Fan Y (2010) The direct pyrolysis and catalytic pyrolysis of Nannochloropsis sp residue for renewable bio-oils. Bioresour Technol 101:4593–4599CrossRefGoogle Scholar
  80. Peng WM, Wu QY, Tu PG (2000) Effects of temperature and holding time on production of renewable fuels from pyrolysis of Chlorella protothecoides. J Appl Phycol 12:147–152CrossRefGoogle Scholar
  81. Peng WM, Wu QY, Tu PG (2001) Pyrolytic characteristics of heterotrophic Chlorella protothecoides for renewable bio-fuel production. J Appl Phycol 13:5–12CrossRefGoogle Scholar
  82. Peterson AA, Vogel F, Lachance RP, Froling M, Antal MJ, Tester JW (2008) Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies. Energy Environ Sci 1:32–65CrossRefGoogle Scholar
  83. Pogaku R (2015) Advances in bioprocess technology. Springer, ChamGoogle Scholar
  84. Pohl P, Wagner H (1972) Control of fatty acid and lipid biosynthesis in Euglena gracilis by ammonia, light and DCMU. Z Naturforsch 27:53–61CrossRefGoogle Scholar
  85. Prabandono K, Amin S (2015) Production of biomethane from marine microalgae. In: Kim SK, Lee CG (eds) Marine bioenergy: trends and developments. CRC Press/Taylor & Francis Group, Boca RatonGoogle Scholar
  86. Pragya N, Pandey KK, Sahoo PK (2013) A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sust Energ Rev 24:159–171CrossRefGoogle Scholar
  87. Radakovits RRE, Jinkerson A, Darzins C (2010) Posewitz, genetic engineering of algae for enhanced biofuel production. Eukaryot Cell 9(2010):486–501CrossRefGoogle Scholar
  88. Raheem A, Wan Azlina KG, Taufiq Yap YH, Danquah MK, Harun R (2015) Thermochemical conversion of microalgal biomass for biofuel production. Renew Sust Energ Rev 49:990–999CrossRefGoogle Scholar
  89. Researchers convert algae to butanol Fuel can be used in automobiles. States News Service, March 1 2011 Issue www.newswise.com/.../researchers-convert-algae-to-butanol-fuel-can-be-used-in-auto
  90. Rosenberg A, Gouaux J (1967) Quantitative and compositional changes in monogalactosyl and digalactosyl diglycerides during light-induced formation of chloroplasts in Euglena gracilis. J Lipid Res 8:80–83Google Scholar
  91. Saifullah AZA, Karim Md A, Ahmad-Yazid A (2014) Microalgae: an alternative source of renewable energy. Am J Eng Res 3(3):330–338Google Scholar
  92. Sawayama S, Inoue S, Yokoyama S (1994) Continuous culture of hydrocarbon-rich microalga Botryococcus braunii in secondarily treated sewage. Appl Microbiol Biotechnol 41:729–731CrossRefGoogle Scholar
  93. Sawayama S, Minowa T, Yokoyama SY (1999) Possibility of renewable energy production and CO2 mitigation by thermochemical liquefaction of microalgae. Biomass Bioenergy 17:33–39CrossRefGoogle Scholar
  94. Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43CrossRefGoogle Scholar
  95. Šebor G, Pospíšil M, Žákovec J (2006) Technical and economic analysis of suitable alternative transport fuels, research report prepared for the Ministry of Transport, ICHT Prague, June 2006. [online]. [cit. – 2012-11-09], available from: http://www.mdcr.cz/cs/Strategie/Zivotni_prostred
  96. Sharma A, Arya SK (2017) Hydrogen from algal biomass: a review of production process. Biotechnol Rep (Amst) 14:63–69CrossRefGoogle Scholar
  97. Show PL, Tang MSY, Nagarajan D, Ling TC, Ooi CW, Chang JS (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 18:215.  https://doi.org/10.3390/ijms18010215 CrossRefGoogle Scholar
  98. Singh L, Kalia VC (2017) Waste biomass management – a holistic approach. Springer, ChamCrossRefGoogle Scholar
  99. Singh A, Rathore D (2017) Biohydrogen production: sustainability of current technology and future perspective. Springer, New DelhiCrossRefGoogle Scholar
  100. Soeder CJ (1986) A historical outline of applied algology. In: Richmond A (ed) Handbook of microalgal mass culture. CRC Press, Boca Raton, pp 25–41Google Scholar
  101. Spoehr HA, Milner HW (1949) The chemical composition of Chlorella; effect of environmental conditions. Plant Physiol 24:120–149CrossRefGoogle Scholar
  102. Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2:535–541CrossRefGoogle Scholar
  103. Takacˇova A, Mackul’ak T, Smolinska M, Hutˇnan M, Olejnikova P (2012) Influence of selected biowaste materials pre-treatment on their anaerobic digestion. Chem Pap 66(2):129–137Google Scholar
  104. Tsukahara K, Sawayama S (2005) Liquid fuel production using microalgae. J Jpn Petr Inst 48:251–259CrossRefGoogle Scholar
  105. Vardon DR, Sharma BK, Blazina GV, Rajagopalan K, Strathmann TJ (2012) Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresour Technol 109:178–187CrossRefGoogle Scholar
  106. Varjani SJ, Agarwal AK, Gnansounou E, Gurunathan B (2018) Bioremediation: applications for environmental protection and management. Springer, SingaporeCrossRefGoogle Scholar
  107. Wan YQ, Chen P, Zhang B, Yang CY, Liu YH, Lin XY, Ruan R (2009) Microwave-assisted pyrolysis of biomass: catalysts to improve product selectivity. J Anal Appl Pyrolysis 86:161–167CrossRefGoogle Scholar
  108. Wang J, Yin Y (2018) Fermentative hydrogen production using pretreated microalgal biomass as feedstock. Microb Cell Factories 17(22):1–16.  https://doi.org/10.1186/s12934-018-0871-5 CrossRefGoogle Scholar
  109. Wang Y, Guo W, Chen BY, Cheng CL, Lo YC, Ho SH, Chang JS, Ren N (2015) Exploring the inhibitory characteristics of acid hydrolysates upon butanol fermentation: a toxicological assessment. Bioresour Technol 198:571–576CrossRefGoogle Scholar
  110. Werner D (1966) Die Kieselsaure im Stoffwechsel von Cyclotella cryptica Reimann, Lewin and Guilard. Arch Mikrobiol 55:278–308CrossRefGoogle Scholar
  111. Yan W, Acharjee TC, Coronella CJ, Vasquez VR (2009) Thermal pretreatment of lignocellulosic biomass. Environ Prog Sustain Energy 28:435–440CrossRefGoogle Scholar
  112. Yang M (2015) The use of lignocellulosic biomass for fermentative butanol production in biorefining processes. Dissertationes Forestales.  https://doi.org/10.14214/df.202
  113. Yang YF, Feng CP, Inamori Y, Maekawa T (2004) Analysis of energy conversion characteristics in liquefaction of algae. Resour Conserv Recycl 43:21–33CrossRefGoogle Scholar
  114. Yu F, Ruan R, Steele P (2008) Consecutive reaction model for the pyrolysis of corn cob. Trans ASABE 51:1023–1028CrossRefGoogle Scholar
  115. Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen WH, Chang JS (2017) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11.  https://doi.org/10.1016/j.biortech.2017.08.009 CrossRefGoogle Scholar
  116. Zhu L (2015) Microalgal culture strategies for biofuel production: a review. Biofuels Bioprod Biorefin 9:801–814CrossRefGoogle Scholar
  117. Zhu LD, Hiltunen E, Antila E, Zhong JJ, Yuan ZH, Wang ZM (2014) Microalgal biofuels: flexible bioenergies for sustainable development. Renew Sust Energ Rev 30:1035–1046CrossRefGoogle Scholar
  118. Zou SP, Wu YL, Yang MD, Li C, Tong JM (2009) Thermochemical catalytic liquefaction of the marine microalgae Dunaliella tertiolecta and characterization of bio-oils. Energy Fuel 23:3753–3758CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pratima Bajpai
    • 1
  1. 1.Pulp and Paper ConsultantKanpurIndia

Personalised recommendations