Cultivation of Third Generation Biofuel

  • Pratima Bajpai
Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)


Cultivation of microalgae in open ponds, closed ponds, photobioreactors and hybrid system are presented in this chapter. The most widely used photobioreactors – tubular, flat and column photobioreactors are discussed.


Cultivation Microalgae Open ponds Closed ponds Photobioreactors Hybrid system Biofuel Circular ponds Raceway ponds 


  1. Abdulqader G, Barsanti L, Tredici MR (2000) Harvest of Arthrospira platensis from Lake Kossorom (Chad) and its household usage among the Kanembu. J Appl Phycol 12:493–498CrossRefGoogle Scholar
  2. Amin S (2009) Review on biofuel oil and gas production processes from microalgae. Energy Convers Manag 50:1834–1840CrossRefGoogle Scholar
  3. Basanta KB, Varma A (2016) From algae to liquid fuels. In: Microbial resources for sustainable energy. Springer, ChamGoogle Scholar
  4. Borowitzka MA (1999) Commercial production of microalgae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321CrossRefGoogle Scholar
  5. Borowitzka MA (2005) Culturing microalgae in outdoor ponds. In: Andersen RA (ed) Algal culturing techniques. Elsevier Academic Press, Burlington, pp 205–218Google Scholar
  6. Brennan L, Owende P (2010) Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sust Energ Rev 14:557–577CrossRefGoogle Scholar
  7. Carlsson AS, van Beilen JB, Moller R, Clayton D (2007) Micro- and macro-algae: utility for industrial applications, 1st edn. CPL Press, NewburyGoogle Scholar
  8. Carmichael WW, Drapeau C, Anderson DM (2000) Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (Cyanobacteria) from Klamath Lake for human ietary use. J Appl Phycol 12:585–595CrossRefGoogle Scholar
  9. Carvalho AP, Meireles LA, Malcata FX (2006) Microalgal reactors: a review of enclosed system designs and performances. Biotechnol Prog 22:1490–1506CrossRefGoogle Scholar
  10. Chaumont D (1993) Biotechnology of algal biomass production: a review of systems for outdoor mass culture. J Appl Phycol 5:593–604CrossRefGoogle Scholar
  11. Chini Zittelli G, Biondi N, Rodolfi L, Tredici MR (2013) Photobioreactors for mass production of microalgae. In: Richmond A, Hu Q (eds) Handbook of microalgal culture: applied phycology and biotechnology, 2nd edn. Wiley, Oxford, pp 225–266CrossRefGoogle Scholar
  12. Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306CrossRefGoogle Scholar
  13. Demirbas A (2010a) Use of algae as biofuel sources. Energy Convers Manag 51:2738–2749CrossRefGoogle Scholar
  14. Demirbas A (2010b) Thermochemical processes. In: Biorefineries, Green energy and technology. Springer, LondonCrossRefGoogle Scholar
  15. Doucha J, Lıvansky K (2009) Outdoor open thin-layer microalgal photobioreactor: potential productivity. J Appl Phycol 21:111–117CrossRefGoogle Scholar
  16. Dragone G, Fernandes B, Vicente AA, Teixeira JA (2010) Third generation biofuels from microalgae. In: Mendez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology. Formatex, Badajoz, pp 1355–1366Google Scholar
  17. Dudeja S, Bhattacherjee AB, Chela-Flores J (2012) Antarctica as model for the possible emergence of life on Europa. In: Hanslmeier A, Kempe S, Seckbach J (eds) Life on earth and other planetary bodies. Cellular origin and life in extreme habitats and astrobiology. Springer, DordrechtGoogle Scholar
  18. Fernandes BD, Mota A, Teixeira JA, Vicente AA (2015) Continuous cultivation of photosynthetic microorganisms: approaches, applications and future trends. Biotechnol Adv. CrossRefGoogle Scholar
  19. Geada P, Vasconcelos V, Vicente A, Fernandes B (2017) Microalgal biomass cultivation. Elsevier BV, AmsterdamCrossRefGoogle Scholar
  20. Hoekema S, Bijmans M, Janssen M, Tramper J, Wijffels RH (2002) A pneumatically agitated flatpanel photobioreactor with gas recirculation: anaerobic photoheterotrophic cultivation of a purple nonsulfur bacterium. Int J Hydrog Energy 27:1331–1338CrossRefGoogle Scholar
  21. Hu Q, Guterman H, Richmond A (1996) A flat inclined modular photobioreactor (FIMP) for outdoor mass cultivation of photoautotrophs. Biotechnol Bioeng 51:51–60CrossRefGoogle Scholar
  22. IEA Bioenergy (2017) State of technology review – algae bioenergy an IEA bioenergy inter-task strategic project.
  23. Jin L, Huang J, Che F (2011) Microalgae as feedstocks for biodiesel production. In: Biodiesel – feedstocks and processing technologies. IntechOpen Limited, LondonGoogle Scholar
  24. Khan SA (2009) Prospects of biodiesel production from microalgae in India. Renew Sust Energ Rev 13:2361–2372CrossRefGoogle Scholar
  25. Lee Y-K, Ding S-Y, Low C-S, Chang Y-C, Forday W, Chew P-C (1995) Design and performance of an α-type tubular photobioreactor for mass cultivation of microalgae. J Appl Phycol 7:47–51CrossRefGoogle Scholar
  26. Li X, Xu H, Wu Q (2007) Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng 98:764–771CrossRefGoogle Scholar
  27. Liu ZW, Yu RQ, Guo Y (2000) Photobioreactors for cultivating microalgae. Modern Chem Ind 20(12):56–58Google Scholar
  28. Masojıdek J, Kopecky J, Giannelli L, Torzillo G (2011) Productivity correlated to photobiochemical performance of Chlorella mass cultures grown outdoors in thinlayer cascades. J Ind Microbiol Biotechnol 38:307–317CrossRefGoogle Scholar
  29. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232CrossRefGoogle Scholar
  30. Milner HW (1953) Rocking tray. In: Burlew JS (ed) Algal culture from laboratory to pilot plant, vol 600. Carnegie Institution, Washington, DC, p 108Google Scholar
  31. Molina Grima E (1999) Microalgae, mass culture methods. In: Flickinger MC, Drew SW (eds) Encyclopedia of bioprocess technology: fermentation, biocatalysis and bioseparation. Wiley, New York, pp 1753–1769Google Scholar
  32. Molina Grima E, Fern’andez J, Aci’en Fern’andez FG, Chisti Y (2001) Tubular photobioreactor design for algal cultures. J Biotechnol 92:113–131CrossRefGoogle Scholar
  33. Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466CrossRefGoogle Scholar
  34. Ramos De Ortega A, Roux JC (1986) Production of Chlorella biomass in different types of flat bioreactors in temperate zones. Biomass 10:141–156CrossRefGoogle Scholar
  35. Richmond A (2004) Biological principles of mass cultivation. In: Richmond A (ed) Handbook of microalgal cultures, biotechnology and applied phycology. Blackwell, Oxford, pp 125–177Google Scholar
  36. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112CrossRefGoogle Scholar
  37. Samson R, LeDuy A (1985) Multistage continuous cultivation of blue-green alga Spirulina maxima in the flat tank photobioreactors with recycle. Can J Chem Eng 63:105–112CrossRefGoogle Scholar
  38. Schenk PM, Thomas-Hall SR, Stephens E, Marx U, Mussgnug JH, Posten C (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res 1:20–43CrossRefGoogle Scholar
  39. Scott SA, Davey MP, Dennis JS, Horst I, Howe CJ, Lea-Smith DJ, Smith AG (2010) Biodiesel from algae: challenges and prospects. Curr Opin Biotechnol 21(3):277–286CrossRefGoogle Scholar
  40. Setlık I, Veladimir S, Malek I (1970) Dual purpose open circulation units for large scale culture of algae in temperate zones. I. Basic design considerations and scheme of pilot plant. Algol Stud 1:11Google Scholar
  41. Show PL, Tang MSY, Nagarajan D, Ling TC, Ooi CW, Chang JS (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 18:215. CrossRefGoogle Scholar
  42. Soni RA, Sudhakar K, Rana RS (2017) Spirulina– from growth to nutritional product: a review. Trends Food Sci Technol 69:157–171CrossRefGoogle Scholar
  43. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96CrossRefGoogle Scholar
  44. Sydney EB, Sturm W, de Carvalho JC, Thomaz-Soccol V, Larroche C, Pandey A, Soccol CR (2010) Potential carbon dioxide fixation by industrially important microalgae. Bioresour Technol 101:5892–5896CrossRefGoogle Scholar
  45. Terry KL, Raymond LP (1985) System design for the autotrophic production of microalgae. Enzym Microb Technol 7:474–487CrossRefGoogle Scholar
  46. Thein M (1993) Production of Spirulina in Myanmar (Burma). Bulletin de l’Institut Océanographique 12:175–178Google Scholar
  47. Torzillo G, Pushparaj B, Bocci F, Balloni W, Materassi R, Florenzano G (1986) Production of Spirulina biomass in closed photobioreactors. Biomass 11:61–74CrossRefGoogle Scholar
  48. Torzillo G, Carlozzi P, Pushparaj B, Montaini E, Materassi R (1993) A two-plane tubular photobioreactor for outdoor culture of Spirulina. Biotechnol Bioeng 42:891–898CrossRefGoogle Scholar
  49. Tredici MR (2004) Mass production of microalgae: photobioreactors. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science, Oxford, pp 178–214Google Scholar
  50. Tredici MR, Materassi R (1992) From open ponds to vertical alveolar panels: the Italian experience in the development of reactors for the mass cultivation of photoautotrophic microorganisms. J Appl Phycol 4:221–231CrossRefGoogle Scholar
  51. Tredici MR, Rodolfi L (2004) Reactor for industrial culture of photosynthetic micro-organisms. PCT Patent WO2004/074423Google Scholar
  52. Tredici MR, Biondi N, Chini Zittelli G, Ponis E, Rodolfi L (2009) Advances in microalgal culture for aquaculture feed and other uses. In: Burnell G, Allan G (eds) New technologies in aquaculture: improving production efficiency, quality and environmental management. Woodhead Publishing/CRC Press, Cambridge/Boca Raton, pp 610–676CrossRefGoogle Scholar
  53. Tredici MR, Chini Zittelli G, Rodolfi L (2010) Photobioreactors. In: Flickinger MC, Anderson S (eds) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology, vol 6. Wiley, Hoboken, pp 3821–3838Google Scholar
  54. Tüccar G, Güngör C, Uludamar E, Aydin K (2015) The potential of microalgal biodiesel in Turkey. Energy Source Part B Econ Plann Policy 10(4):397–403CrossRefGoogle Scholar
  55. Ugwu CU (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028CrossRefGoogle Scholar
  56. Ugwu CU, Aoyagi H, Uchiyama H (2008) Photobioreactors for mass cultivation of algae. Bioresour Technol 99:4021–4028CrossRefGoogle Scholar
  57. Um BH, Kim YS (2009) Review: a chance for Korea to advance algal-biodiesel technology. J Ind Eng Chem 15:1–7CrossRefGoogle Scholar
  58. Wen Z, Liu J, Chen F (2011) Biofuel from microalgae. In: Moo-Young M (ed) Comprehensive biotechnology. Elsevier BV, AmsterdamGoogle Scholar
  59. Xu H, Miao X, Wu Q (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126:499–507CrossRefGoogle Scholar
  60. Yoo C, Jun SY, Lee JY, Ahn CY, Oh HM (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Bioresour Technol 101:71–74CrossRefGoogle Scholar
  61. Zhang K, Kurano N, Miyachi S (2002) Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioproc Biosys Bioeng 25:97–101CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pratima Bajpai
    • 1
  1. 1.Pulp and Paper ConsultantKanpurIndia

Personalised recommendations