Advertisement

Distributed Fixed-Time Consensus Algorithm for Multiple Nonholonomic Chained-Form Systems

  • Yutao Jiang
  • Zhongxin Liu
  • Zengqiang Chen
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 528)

Abstract

In this paper, the fixed-time control algorithm is used to address the consensus problem for multiple nonholonomic chained-form systems. For the sake of analysis, a switching control strategy is introduced to solve the fixed-time consensus problem. Compared with the finite-time control algorithm, the convergence time of the fixed-time consensus protocol, can be guaranteed regardless of the initial conditions. Rigorous proof using Lyapunov theory shows that the sates of multiple nonholonomic chained-form systems can reach a consensus in a fixed time. To further illustrate the effectiveness of the control algorithm, a numerical simulation is given.

Keywords

Distributed control Nonholonomic chained-form systems Lyapunov theory Finite-time consensus Fixed-time consensus 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61573200, 61573199).

References

  1. 1.
    D. HaiBo, G.H. Wen, Y.Y. Cheng, Y.G. He, R. Jia, Distributed finite-time cooperative control of multiple high-order nonholonomic mobile robots. IEEE Trans. Neural Netw. Learn. Syst. 28(12), 2998–3006 (2017)Google Scholar
  2. 2.
    Y. WenWu, G.R. Cheng, J.H. Lü, On pinning synchronization of complex dynamical networks. Automatica 45(2), 429–435 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Z. Li, Z.S. Duan, L. Huang, Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I 57(1), 213–224 (2010)MathSciNetCrossRefGoogle Scholar
  4. 4.
    A.S. Jun Lin, B.D.O. Morse Anderson, The multi-agent rendezvous problem. I: the synchronous case. SIAM J. Control Opt. 46(6), 1508–1513 (2008)Google Scholar
  5. 5.
    W. Ren, Distributed attitude alignment in spacecraft formation flying. Int. J. Adap. Control Signal Process. 21(2), 95–113 (2010)MathSciNetzbMATHGoogle Scholar
  6. 6.
    R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithm and theory. IEEE Trans. Auto. Control 49(4), 622–629 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    R. Olfati-Saber, R.M. Murray, Consensus problems in network of agents with switching topology and time-delays. IEEE Trans. Auto. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  8. 8.
    W.Y. Hou, F. MinYue, H.S. Zhang, Consensusability of linear multi-agent systems with time delay. Int. J. Robust Nonlinear Control 26(12), 2529–2541 (2016)MathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Sanjay, Bhat, Dennis S. Bernstein, Finite-time stability of continuous autonomous systems. SIAM J. Control Opt. 38(3), 751–766 (2000)Google Scholar
  10. 10.
    S.H. Li, S.H. Ding, Q. Li, Global set stabilisation of the spacecraft attitude using finite-time control technique. Int. J. Control 82(5), 822–836 (2009)MathSciNetCrossRefGoogle Scholar
  11. 11.
    J. Corts, Finite-time convergent gradient flows with applications to network consensus. Int. J. Control 42(11), 1993–2000 (2006)MathSciNetzbMATHGoogle Scholar
  12. 12.
    S.H. Li, D. HaiBo, XianZe Li, Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics. Automatica 42(11), 1993–2000 (2006)MathSciNetCrossRefGoogle Scholar
  13. 13.
    F. Xiao, L. Wang, J. Chen, Y.P. Gao, Finite-time formation control for multi-agent systems. Automatica 45(11), 2605–2611 (2009)MathSciNetCrossRefGoogle Scholar
  14. 14.
    H.B. Du, G.H. Wen, X.H. Yu, S.H. Li, M.Z.Q. Che, Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer. Automatica 62(C), 236–242 (2015)MathSciNetCrossRefGoogle Scholar
  15. 15.
    O. MeiYing, D. HaiBo, S.H. Li, Finite-time formation control of multiple nonholonomic mobile robots. Int. J. Robust Nonlinear Control 24(1), 140–165 (2014)Google Scholar
  16. 16.
    A. Polyakov, Nonlinear feedback design for fixed-Time stabilization of linear control systems. IEEE Trans. Auto. Control 57(8), 2106–2110 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Z.Y. Zuo, L. Tie, A new class of finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Control 87(2), 363–370 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    J. Liu, Y. Yao, Q. Wang, C. Sun, Fixed-time event-triggered consensus control for multi-agent systems with nonlinear uncertaintie. Neurocomputing 260(18), 497–504 (2017)CrossRefGoogle Scholar
  19. 19.
    S. Parsegov, A. Polyakov, P. Shcherbakov, Nonlinear fixed-time control protocol for uniform allocation of agents on a segment, in 51st Conference on Decision and Control, pp. 7732–7737 (2012)Google Scholar
  20. 20.
    Z.Y. Zuo, L. Tie, Distributed robust finite-time nonlinear consensus protocols for multi-agent systems. Int. J. Syst. Sci. 47(6), 1366–1375 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    V.T. Haimo, Finite time controllers. SIAM J. Control Opt. 24(4), 760–770 (1986)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.College of Computer and Control Engineering, Nankai UniversityTianjinChina
  2. 2.Tianjin Key Laboratory of Intelligent RoboticsNankai UniversityTianjinChina

Personalised recommendations