Advertisement

Flocking Motion of Second-Order Multi-agent Systems with Mismatched Disturbances

  • Fan Liu
  • Hongyong Yang
  • Yize Yang
  • Yuling Li
  • Yuanshan Liu
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 528)

Abstract

Based on the problem of flocking for second-order multi-agent systems with mismatched disturbances, a distributed control algorithm with individual local information is investigated. For each agent, a disturbance observer is designed. And then based on disturbance observer, a distributed control protocol with feed-forward compensation term is proposed. By using Lyapunov stability and input to state stability theory, it proves that the distributed control law enables to make all agents eventually converge to the leader’s velocity when at least one agent can receive the leader’s information. Finally, a numerical simulation example illustrates the effectiveness of the conclusion.

Keywords

Distributed control Flocking motion Mismatched disturbances Disturbance observer Weak connectivity 

Notes

Acknowledgements

This paper is supported by the National Natural Science Foundation of China (61673200, 61771231, 61471185), Natural Science Foundation of Shandong Province (ZR2018ZC0438, ZR2017MF010, ZR2017PF010) and the Key R&D Program of Yantai City (2016ZH061)

References

  1. 1.
    C.W. Reynolds, Flocks, herds and schools: a distributed behavioral model. ACM SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)CrossRefGoogle Scholar
  2. 2.
    R. Olfati-Saber, R.M. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    R. Olfati-Saber, Flocking for multi-agent dynamic systems: algorithms and theory. IEEE Trans. Autom. Control 51(3), 401–420 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Su, X. Wang, Z. Lin, Flocking of multi-agents with a virtual leader. IEEE Trans. Autom. Control 54(2), 293–307 (2009)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Su, Flocking in multi-agent systems with multiple virtual leaders based only on position measurements. Commun. Theor. Phys. 57(5), 801–807 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Hongyong, W. Fuyong, H. Fujun, Containment control of fractional order multi-agent systems with time delays. IEEE/CAA J. Autom. Sinica 5(3):727–732. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7783963 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H.Y. Yang, Y. Yize, H. Fujun, Z. Mei, G. Lei, Containment control of heterogeneous fractional-order multi-agent systems. J. Franklin Instit. (2017).  https://doi.org/10.1016/j.jfranklin.2017.09.034
  8. 8.
    Y. Hongyong, H. Fujun, Z. Mei, Z. Shuning, Y. Jun, Distributed containment control of heterogeneous fractional-order multi-agent systems with communication delays. Open Phys. 15, 509–516 (2017)CrossRefGoogle Scholar
  9. 9.
    Y. Hongyong, Z. Zhenxing, Z. Siying, Consensus of second-order multi-agent systems with exogenous disturbances. Int. J. Robust Nonlin. Control 21(9), 945–956 (2011)MathSciNetCrossRefGoogle Scholar
  10. 10.
    S.H. Li, J. Yang, W.H. Chen et al. Disturbance Observer-Based Control: Methods and Applications. CRC Press, Inc. (2014)Google Scholar
  11. 11.
    L. Yuling, Y. Hongyong, L. Fan, Y. Yize, Finite-time containment control of second-order multi-agent systems with unmatched disturbances. Acta Autom. SINICA (2018).  https://doi.org/10.16383/j.aas.2018.c170571
  12. 12.
    H.K. Khalil, Nonlinear Systems, 3rd edn. (Prentice Hall, New York, 2002)zbMATHGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Fan Liu
    • 1
  • Hongyong Yang
    • 1
  • Yize Yang
    • 2
  • Yuling Li
    • 1
  • Yuanshan Liu
    • 1
  1. 1.School of Information and Electrical EngineeringLudong UniversityYantaiChina
  2. 2.School of Electrical Engineering and TelecommunicationsUniversity of New South WalesSydneyAustralia

Personalised recommendations