Performance Analysis of Flux-Switching Stator Permanent Magnet Motor Based on Linear Active Disturbance Rejection Control

  • Kelei Wang
  • Zengqiang ChenEmail author
  • Mingwei Sun
  • Qinglin Sun
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 528)


Flux-switching permanent magnet motor (FSPMM) is a new stator permanent magnet brushless motor. It overcomes many shortcomings of the conventional permanent magnet motor having magnets in the rotor and has a well application prospect. The three-phase 12-slots/10-poles FSPMM is used as the control object. On the basis of the working principles, the mathematical models have deduced and the mechanical properties are calculated. The characteristics of the electromagnetic are analysed by setting up the steady and dynamic-state models of the FSPMM. Linear Active Disturbance Rejection Control (LADRC) is designed in the speed loop of the FSPMM to realize the linear control of the nonlinear system. By using the Linear Extended State Observer (LESO), the total disturbances can be estimated and compensated in real time. The performance robustness is verified by the Monte Carlo experiments of the two control strategies, including the LADRC algorithm, and the traditional PI control strategy. The results show that LADRC strategy has a greater capability of disturbance rejecting and stronger performance robustness.


Flux-switching permanent magnet motor Speed control algorithm Linear active disturbance rejection control Linear extented state observer robustness Monte Carlo 



This work was supported by National Natural Science Foundation of China (Grant No. 61573199 and 61573197) and the Tianjin Municipal Natural Science Foundation (Grant No. 14JCYBJC18700).


  1. 1.
    W. Hua, M. Cheng, Static characteristics of doubly-salient brushless machines having magnets in the stator considering end-effect. Electr. Mach. Power Syst. 36(7), 754–770 (2008)CrossRefGoogle Scholar
  2. 2.
    Z.Q. Zhu, Y. Pang, D. Howe, S. Iwasaki, R. Deodhar, Analysis of electromagnetic performance of flux-switching permanent-magnet machines by nonlinear adaptive lumped parameter magnetic circuit model. IEEE Trans. Magn. 41(11), 4277–4287 (2005)CrossRefGoogle Scholar
  3. 3.
    Z.Q. Zhu, J.T. Chen, Advanced flux-switching permanent magnet brushless machines. IEEE Trans. Magn. 46(6), 1447–1453 (2010)CrossRefGoogle Scholar
  4. 4.
    W. Zhao, M. Cheng, W. Hua, H. Jia, Ruiwu Cao, Back-emf harmonic analysis and fault-tolerant control of flux-switching permanent-magnet machine with redundancy. IEEE Trans. Ind. Electron. 58(5), 1926–1935 (2011)CrossRefGoogle Scholar
  5. 5.
    Y. Wang, M.J. Jin, M.J. Fei, J.X. Shen, Cogging torque reduction in permanent magnet flux-switching machines by rotor teeth axial pairing. IET Electr. Power Appl. 4(7), 500–506 (2010)CrossRefGoogle Scholar
  6. 6.
    M. Cheng, W. Hua, J. Zhang, W. Zhao, Overview of stator—permanent magnet brushless machines. IEEE Trans. Ind. Electron. 58(11), 5087–5101 (2011)CrossRefGoogle Scholar
  7. 7.
    L. Wang, S. Aleksandrov, Y. Tang, J.J.H. Paulides, E.A. Lomonova, Fault-tolerant electric drive and space-phasor modulation of flux-switching permanent magnet machine for aerospace application. IET Electr. Power Appl. 11(8), 1416–1423 (2017)CrossRefGoogle Scholar
  8. 8.
    W. Hua, M. Cheng, A new model of vector-controlled doubly-salient permanent magnet motor with skewed rotor, in Proceedings of the International Conference on Electrical Machines and Systems (Wuhan, China, 2009), pp. 3026–3031Google Scholar
  9. 9.
    H. Jia, M. Cheng, W. Hua, W. Lu, X. Fu, Investigation and implementation of control strategies for flux-switching permanent magnet motor drives, in Proceedings of the IEEE Industry Applications Society Meeting (Edmonton, AB, Canada, 2008), pp. 1–6Google Scholar
  10. 10.
    H.H. Choi, J.W. Jung, R.Y. Kim, Fuzzy adaptive speed control of a permanent magnet synchronous motor. Int. J. Electron. 99(5), 657–672 (2012)CrossRefGoogle Scholar
  11. 11.
    S. Ma, W. Peijun, J. Ji, X. Li, Sensorless control of salient pmsm with adaptive integrator and resistance online identification using strong tracking filter. Int. J. Electron. 103(2), 217–231 (2016)CrossRefGoogle Scholar
  12. 12.
    C. Zhong, Y. Lin, Model reference adaptive control (MRAC)-based parameter identification applied to surface-mounted permanent magnet synchronous motor. Int. J. Electron. 104(11), 1854–1873 (2017)CrossRefGoogle Scholar
  13. 13.
    H. Jia, M. Cheng, W. Hua, W. Lu, A new stator-flux orientation strategy for flux-switching permanent motor drive based on voltage space-vector, in Proceedings of the International Conference on Electrical Machines and Systems (Wuhan, China, 2009), pp. 3032–3036Google Scholar
  14. 14.
    M. Cheng, Q. Sun, E. Zhou, New self-tuning fuzzy PI control of a novel doubly salient permanent magnet motor drive. IEEE Trans. Ind. Electron. 53(3), 814–821 (2006)Google Scholar
  15. 15.
    J. Han, From pid to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)CrossRefGoogle Scholar
  16. 16.
    J. Han, Active Disturbance Rejection Control Technique-the Technique for Estimating and Compensating the Uncertainties (National Defense Industry Press, Beijing, 2008)Google Scholar
  17. 17.
    J. Li, Y. Xia, X. Qi, Z. Gao, On the necessity, scheme and basis of the linear-nonlinear switching in active disturbance rejection control. IEEE Trans. Ind. Electron. 64(2), 1425–1435 (2016)CrossRefGoogle Scholar
  18. 18.
    W. Tan, F. Caifen, Linear active disturbance-rejection control: analysis and tuning via imc. IEEE Trans. Ind. Electron. 63(4), 2350–2359 (2016)Google Scholar
  19. 19.
    G. Wang, B. Wang, C. Li, X. Dianguo, Weight-transducerless control strategy based on active disturbance rejection theory for gearless elevator drives. IET Electr. Power Appl. 11(2), 289–299 (2017)CrossRefGoogle Scholar
  20. 20.
    Y. Jiang, Q. Sun, X. Zhang, Z. Chen, Pressure regulation for oxygen mask based on active disturbance rejection control. IEEE Trans. Ind. Electron. 64(8), 6402–6411 (2017)CrossRefGoogle Scholar
  21. 21.
    Q. Zheng, L. Dong, D.H. Lee Zhang, Z. Gao, Active disturbance rejection control for mems gyroscopes. IEEE Trans. Control Syst. Technol. 17(6), 1432–1438 (2009)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kelei Wang
    • 1
  • Zengqiang Chen
    • 1
    • 2
    Email author
  • Mingwei Sun
    • 1
  • Qinglin Sun
    • 1
  1. 1.College of Computer and Control EngineeringNankai UniversityTianjinChina
  2. 2.Key Lab of Intelligent Robotics of TianjinTianjinChina

Personalised recommendations