Multi-contacts Interface: Electrical Properties of Dynamical Interface

  • Eddy ChevallierEmail author
  • Nicolas Foy
  • Robert Bouzerar
  • Brice Jonckheere
  • Sabrina Ait Mohamed
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Signal transfer systems are used in some industrial or transport applications. These systems have to transmit, through a sliding (pantograph/catenary) or a rolling (wheel/rail) multi-contact interface (MCI), power currents, measurements signals or control signals using specific communication protocols. In the interface are generated electromechanical couplings between solid surfaces of a device in motion, sometimes at high-speed. Whatever the condition of implementation, the quality of the contact must be understood to be optimized. The study of the performance indicators of these systems thus requires the physical understanding and the modeling of the mechanisms at the contact interface.

In accordance with the common trends in the field, we propose a theoretical approach to the electrical transport through metallic MCIs, treated as a moving discrete collection of a finite number of contacting asperities. In another hand, we build a statistical approach of the mechanical interface spots interactions leading to electrical consequences that can predict experimental behaviors.


Multi-contacts interface Interface electrical properties Static interface Dynamical interface Multi-contact simulation 


  1. 1.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. In: Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 295, p. 20 (1966)Google Scholar
  2. 2.
    Greenwood, J.A.: Constriction resistance and the real area of contact. Br. J. Appl. Phys. 17, 1621–1632 (1966)CrossRefGoogle Scholar
  3. 3.
    Holm, R.: Electric Contacts, Theory and Application, 4th edn. Springer, Berlin (2010). GmbH & Co. K., Heidelberg (1967)Google Scholar
  4. 4.
    Foy, N.: Modélisation et simulation multi-physique des interfaces multi-contact métal/metal. Thesis report, PSC, ESIEE-Amiens (2017)Google Scholar
  5. 5.
    Kogut, L., Komvopoulos, K.: Electrical contact resistance theory for conductive rough surfaces. J. Appl. Phys. 94, 3153 (2003)CrossRefGoogle Scholar
  6. 6.
    Zeroukhi, Y., Napieralska-Juszczak, E., Vega, G., Morganti, F., Komeza, K., Wiak, S.: Dependence of the contact resistance on the design of stranded conductors. Sensors 14(8), 13925–13942 (2014)CrossRefGoogle Scholar
  7. 7.
    Arrazat, B., Duvivier, P.Y., Mandrillon, V., Inal, K.: Discrete analysis of gold surface asperities deformation under spherical nano-indentation towards electrical contact resistance calculation. In: IEEE 57th Holm Conference on Electrical Contacts, pp. 1–8 (2011)Google Scholar
  8. 8.
    Jackson, R.L., Streator, J.L.: A multi-scale model for contact between rough surfaces. Wear 261(11–12), 1337–1347 (2006)CrossRefGoogle Scholar
  9. 9.
    Machado, C., Guessasma, M., Bellenger, E., Bourbatache, K., Bourny, V., Fortin, J.: Diagnosis of faults in the bearing by electrical measures and numerical simulations. Mech. Industr. 15(5), 383–391 (2014)CrossRefGoogle Scholar
  10. 10.
    Machado, C., Baudon, S., Guessasma, M., Bourny, V., Fortin, J., Bouzerar, R., Maier, P.: An original DEM bearing model with electromechanical coupling. Int. J. Comput. Methods 15(1), 1840006 (2018)Google Scholar
  11. 11.
    Chevallier, E., Bourny, V., Bouzerar, R., Fortin, J., Durand-Drouhin, O., Da Ros, V.: Voltage noise across a metal/metal sliding contact as a probe of the surface state. J. Appl. Phys. 115, 154903 (2014)CrossRefGoogle Scholar
  12. 12.
    Jonckheere, B., Bouzerar, R., Bourny, V., Bausseron, T., Foy, N., Durand-Drouhin, O., Le Marrec, F., Chevallier, E.: Assessment of the real contact area of a multi-contact interface from electrical measurements. In: 23ème Congrès Français de Mécanique, France (2017)Google Scholar
  13. 13.
    Puille, C., Durand-Drouhin, O., Le Marrec, F., Bourny, V., Bouzerar, R., Fortin, J., Andasmas, M.: Vers un monitoring électrique des garnitures mécaniques d’étanchéité. In: 23ème Congrès Français de Mécanique, France (2017)Google Scholar
  14. 14.
    Dang, V.H., Perret-Liaudet, J., Scheibert, J., Le Bot, A.: Direct numerical simulation of the dynamics of sliding rough surfaces. Comput. Mech. 52, 1169 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tekaya, A., Bouzerar, R., Bourny, V.: Mechanical suppression of tunneling between metallic beads. World J. Eng. (2011, in press)Google Scholar
  16. 16.
    Le Bot, A.: Noise of sliding rough contact. J. Phys: Conf. Ser. 797, 012006 (2017)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Eddy Chevallier
    • 1
    Email author
  • Nicolas Foy
    • 1
  • Robert Bouzerar
    • 2
  • Brice Jonckheere
    • 2
  • Sabrina Ait Mohamed
    • 2
  1. 1.PSC - Laboratoire Physique Des Systèmes ComplexesAmiens Cedex 1France
  2. 2.LPMC - Laboratoire de Physique de La Matière CondenséeAmiens Cedex 1France

Personalised recommendations