Simulation of the Flow Field over the Coastal Terrain

  • Sabine UpnereEmail author
  • Normunds Jekabsons
  • Linda Gulbe
  • Valerijs Bezrukovs
  • Vladislavs Bezrukovs
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


This work presents the preliminary study of simulations of the atmospheric boundary layer over the coastal terrain. The Reynolds-averaged Navier–Stokes equations approach is applied to numerical modelling. The primary goal of the research is to assess the value of wind speed changes due to ground topography at planned measurement place near the sea coast. The simulations of the airflow have been done using the OpenFOAM open source software. The influence of the turbulence models, the dimensions of the computational domain and the mesh size on predicted wind speed is investigated.


Coastal terrain OpenFOAM Turbulence Wind flow 



The work is carried out within the project New European Wind Atlas (NEWA), ENER/FP7/618122/NEWA ERA-NET PLUS, supported by the European Commission under the 7th Framework Programme for Research, Technological Development and Demonstration.


  1. 1.
    Bezrukovs, V., Upnere, S., Bezrukovs, V.I., Zacepins, A., Jekabsons, N.: Effect of the cellular communication mast structure on the wind speed measurement results. Int. J. Contemp. ENERGY 3(2), 41–49 (2017). Scholar
  2. 2.
    Chang, C.Y., Schmidt, J., Dörenkämper, M., Stoevesandt, B.: A consistent steady state CFD simulation method for stratified atmospheric boundary layer flows. J. Wind Eng. Ind. Aerodyn. 172, 55–67 (2018). Scholar
  3. 3.
    Cindori, M., Juretić, F., Kozmar, H., Dźijan, I.: Steady RANS model of the homogeneous atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn. 173, 289–301 (2018). Scholar
  4. 4.
    Vasaturo, R., Kalkman, I., Blocken, B., van Wesemael, P.J.V.: Large eddy simulation of the neutral atmospheric boundary layer: performance evaluation of three in flow methods for terrains with different roughness. J. Wind Eng. Ind. Aerodyn. 173, 241–261 (2018). Scholar
  5. 5.
    Liu, Z., Ishihara, T., He, X., Niu, H.: LES study on the turbulent flow fields over complex terrain covered by vegetation canopy. J. Wind Eng. Ind. Aerodyn. 155, 60–72 (2016). Scholar
  6. 6.
    Sumner, J., Masson, C.: k-\(\varepsilon \) simulations of the neutral atmospheric boundary layer: analysis and correction of discretization errors on practical grids. Int. J. Numer. Meth. Fluids 70, 724–741 (2012). Scholar
  7. 7.
  8. 8.
    Spalart, P.R., Allmaras, S.R.: A one equation turbulence model for aerodynamic flows. In: 30th Aerospace Sciences Meeting and Exhibit, Aerospace Sciences Meetings, Paper 92-0439 (1992).
  9. 9.
    Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15(2), 301–314 (1972). Scholar
  10. 10.
    Richards, P.J., Hoxey, R.P.: Appropriate boundary conditions for computational wind engineering models using the k-epsilon turbulence model. J. Wind Eng. Ind. Aerodyn. 4647, 145–153 (1993)CrossRefGoogle Scholar
  11. 11.
    Schmidt, J., Peralta, C., Stoevesandt, B.: Automated generation of structured meshes for wind energy applications. In: Open Source CFD International Conference, London (2012)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sabine Upnere
    • 1
    Email author
  • Normunds Jekabsons
    • 1
  • Linda Gulbe
    • 1
  • Valerijs Bezrukovs
    • 1
    • 2
  • Vladislavs Bezrukovs
    • 1
  1. 1.Ventspils University of Applied SciencesVentspilsLatvia
  2. 2.Institute of Physical EnergeticsRigaLatvia

Personalised recommendations