Advertisement

Diesel Pool Fire Incident Inside an Urban Street Canyon

  • Konstantinos Vasilopoulos
  • Ioannis E. Sarris
  • Ioannis Lekakis
  • Panagiotis Tsoutsanis
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

In the present work, a diesel pool fire incident inside a street canyon is studied numerically. The flow inside the street canyon, the smallest urban unit, and the pollutant fire dispersion are studied with a Large-eddy Simulation method. The method is compared fairly well against experimental data. Cases with different inflow wind speeds are studied and the risk zones are defined for the different wind approaching scenarios. Results show that part of the fire pollutants exits the canyon, while another part is trapped into the canyon due to the local air recirculation. The buoyancy effect due to the fire incident and the inertial effect of the wind flow define the pollutant’s dispersion. When the wind velocity at the street canyon height exceeds a critical value, the fire pollutants are recirculated and trapped inside the street canyon. This dispersion is analysed based on the flow characteristics in the street canyon.

Keywords

Canyon Fire Risk 

References

  1. 1.
    Kastner-Klein, P., Plate, E.J.: Wind-tunnel study of concentration fields in street canyons. Atmos. Environ. 33(24), 3973–3979 (1999)CrossRefGoogle Scholar
  2. 2.
    Salizzoni, P., et al.: Turbulent transfer between street canyons and the overlying atmospheric boundary layer. Bound. Layer Meteorol. 141(3), 393–414 (2011)CrossRefGoogle Scholar
  3. 3.
    Baik, J.-J., et al.: A laboratory model of urban street-canyon flows. J. Appl. Meteorol. 39(9), 1592–1600 (2000)CrossRefGoogle Scholar
  4. 4.
    Baik, J.-J., Kim, J.-J.: On the escape of pollutants from urban street canyons. Atmos. Environ. 36(3), 527–536 (2002)CrossRefGoogle Scholar
  5. 5.
    DePaul, F.T., Sheih, C.M.: Measurements of wind velocities in a street canyon. Atmos. Environ. (1967) 20(3), 455–459 (1986)CrossRefGoogle Scholar
  6. 6.
    Eliasson, I., et al.: Wind fields and turbulence statistics in an urban street canyon. Atmos. Environ. 40(1), 1–16 (2006)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Inagaki, A., Kanda, M.: Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow. J. Fluid Mech. 615, 101–120 (2008)CrossRefGoogle Scholar
  8. 8.
    Vardoulakis, S., et al.: Modelling air quality in street canyons: a review. Atmos. Environ. 37(2), 155–182 (2003)CrossRefGoogle Scholar
  9. 9.
    Johnson, W.B., et al.: Field study for initial evaluation of an urban diffusion model for carbon monoxide. Comprehensive report (1971)Google Scholar
  10. 10.
    Dabberdt, W.F., Ludwig, F.L., Johnson, W.B.: Validation and applications of an urban diffusion model for vehicular pollutants. Atmos. Environ. (1967) 7(6), 603–618 (1973)CrossRefGoogle Scholar
  11. 11.
    Davidson, M.J., et al.: Plume dispersion through large groups of obstacles—A field investigation. Atmos. Environ. 29(22), 3245–3256 (1995)CrossRefGoogle Scholar
  12. 12.
    Drikakis, D., Rider, W.: High-Resolution Methods for Incompressible and Low-Speed Flows. Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Drikakis, D.: Advances in turbulent flow computations using high-resolution methods. Prog. Aerosp. Sci. 39(6), 405–424 (2003)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Jeong, S.J., Andrews, M.J.: Application of the k–ε turbulence model to the high Reynolds number skimming flow field of an urban street canyon. Atmos. Environ. 36(7), 1137–1145 (2002)CrossRefGoogle Scholar
  15. 15.
    Baik, J.-J., Kim, J.-J.: A numerical study of flow and pollutant dispersion characteristics in urban street canyons. J. Appl. Meteorol. 38(11), 1576–1589 (1998)CrossRefGoogle Scholar
  16. 16.
    Kim, J.-J., Baik, J.-J.: Effects of inflow turbulence intensity on flow and pollutant dispersion in an urban street canyon. J. Wind Eng. Ind. Aerodyn. 91(3), 309–329 (2003)CrossRefGoogle Scholar
  17. 17.
    Hunter, L.J., Johnson, G.T., Watson, I.D.: An investigation of three-dimensional characteristics of flow regimes within the urban canyon. Atmos. Environment. Part B Urban Atmos. 26(4), 425–432 (1992)CrossRefGoogle Scholar
  18. 18.
    Johnson, W.B., et al.: An urban diffusion simulation model for carbon monoxide. J. Air Pollut. Control Assoc. 23(6), 490–498 (1973)CrossRefGoogle Scholar
  19. 19.
    Liu, C.-H., Wong, C.C.C.: On the pollutant removal, dispersion, and entrainment over two-dimensional idealized street canyons. Atmos. Res. 135–136, 128–142 (2014)CrossRefGoogle Scholar
  20. 20.
    Liu, C.-H., Barth, M.C.: Large-Eddy Simulation of Flow and Scalar Transport in a Modeled Street Canyon. J. Appl. Meteorol. 41, 660–673 (2002)CrossRefGoogle Scholar
  21. 21.
    Baik, J.-J., Kang, Y.-S., Kim, J.-J.: Modeling reactive pollutant dispersion in an urban street canyon. Atmos. Environ. 41(5), 934–949 (2007)CrossRefGoogle Scholar
  22. 22.
    Kim, J.-J., Baik, J.-J.: Urban street-canyon flows with bottom heating. Atmos. Environ. 35(20), 3395–3404 (2001)CrossRefGoogle Scholar
  23. 23.
    Hu, L., et al.: A global relation of fire smoke re-circulation behaviour in urban street canyons. J. Civ. Eng. Manag. 21(4), 459–469 (2015)CrossRefGoogle Scholar
  24. 24.
    Zhang, X., et al.: Large eddy simulation of fire smoke re-circulation in urban street canyons of different aspect ratios. Procedia Eng. 62, 1007–1014 (2013)CrossRefGoogle Scholar
  25. 25.
    Pesic, D.J., Blagojevic, M.D., Zivkovic, N.V.: Simulation of wind-driven dispersion of fire pollutants in a street canyon using FDS. Environ. Sci. Pollut. Res. 21(2), 1270–1284 (2014)CrossRefGoogle Scholar
  26. 26.
    Hu, L.H., et al.: Large eddy simulation of pollutant gas dispersion with buoyancy ejected from building into an urban street canyon. J. Hazard. Mater. 192(3), 940–948 (2011)CrossRefGoogle Scholar
  27. 27.
    Chang, C.-H., Meroney, R.N.: Concentration and flow distributions in urban street canyons: wind tunnel and computational data. J. Wind Eng. Ind. Aerodyn. 91(9), 1141–1154 (2003)CrossRefGoogle Scholar
  28. 28.
    Sudheer, S., et al.: Fire safety distances for open pool fires. Infrared Phys. Technol. 61(Suppl. C), 265–273 (2013)CrossRefGoogle Scholar
  29. 29.
    Vasanth, S., et al.: Multiple pool fires: Occurrence, simulation, modeling and management. J. Loss Prev. Process Ind. 29(Suppl. C), 103–121 (2014)CrossRefGoogle Scholar
  30. 30.
    Chatris, J.M., et al.: Experimental study of burning rate in hydrocarbon pool fires. Combust. Flame 126(1), 1373–1383 (2001)CrossRefGoogle Scholar
  31. 31.
    Jiang, P., Lu, S.-X.: Pool fire mass burning rate and flame tilt angle under crosswind in open space. Procedia Eng. 135, 261–274 (2016)CrossRefGoogle Scholar
  32. 32.
    Argyropoulos, C.D., et al.: Modelling pollutants dispersion and plume rise from large hydrocarbon tank fires in neutrally stratified atmosphere. Atmos. Environ. 44(6), 803–813 (2010)CrossRefGoogle Scholar
  33. 33.
    Argyropoulos, C.D., et al.: A hazards assessment methodology for large liquid hydrocarbon fuel tanks. J. Loss Prev. Process Ind. 25(2), 329–335 (2012)CrossRefGoogle Scholar
  34. 34.
    Markatos, N.C., Christolis, C., Argyropoulos, C.: Mathematical modeling of toxic pollutants dispersion from large tank fires and assessment of acute effects for fire fighters. Int. J. Heat Mass Transf. 52(17), 4021–4030 (2009)CrossRefGoogle Scholar
  35. 35.
    Babrauskas, V.: Estimating large pool fire burning rates. Fire Technol. 19(4), 251–261 (1983)CrossRefGoogle Scholar
  36. 36.
    Walton, W.D., et al.: Smoke measurements using an advanced helicopter transported sampling package with radio telemetry. In: Proceedings of the 18th Arctic and Marine Oilspill Program Technical Seminar, Environment, Canada, Ottawa, Ontario, pp. 1053–1074 (1995)Google Scholar
  37. 37.
    Stout, S., Wang, Z.: Oil Spill Environmental Forensics Case Studies. Elsevier Science (2017)Google Scholar
  38. 38.
    Vasanth, S., et al.: Assessment of four turbulence models in simulation of large-scale pool fires in the presence of wind using computational fluid dynamics (CFD). J. Loss Prev. Process Ind. 26(6), 1071–1084 (2013)CrossRefGoogle Scholar
  39. 39.
    McGrattan, K., et al.: Fire Dynamics Simulator (Version 5) Technical Reference Guide, vol. 1018 (2010)Google Scholar
  40. 40.
    Yazid, A.W.M., et al.: A review on the flow structure and pollutant dispersion in urban street canyons for urban planning strategies Simulation. 90, 892–916 (2014)Google Scholar
  41. 41.
    Soulhac, L., Perkins, R.J., Salizzoni, P.: Flow in a street canyon for any external wind direction. Bound. Layer Meteorol. 126(3), 365–388 (2008)CrossRefGoogle Scholar
  42. 42.
    Pesic, D.J., Blagojevic, M.D., Glisovic, S.M.: The model of air pollution generated by fire chemical accident in an urban street canyon. Transp. Res. Part D Transp. Environ. 16(4), 321–326 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Konstantinos Vasilopoulos
    • 1
  • Ioannis E. Sarris
    • 2
  • Ioannis Lekakis
    • 2
  • Panagiotis Tsoutsanis
    • 1
  1. 1.Centre for Computational Engineering SciencesCranfield UniversityCranfieldUK
  2. 2.Department of Mechanical EngineeringUniversity of West AtticaAthensGreece

Personalised recommendations