Understanding the Influence of Neighbours on the Spheroidization of Finite 3-Dimensional Rods in a Lamellar Arrangement: Insights from Phase-Field Simulations

  • Tobias MittnachtEmail author
  • P. G. Kubendran Amos
  • Daniel Schneider
  • Britta Nestler
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


Understanding the microstructural phenomena during the production chain of steels is essential to improve the characteristic material properties. Besides experimental investigations, numerical methods have proven to be a powerful tool to yield property delineations. Therefore, a phase-field model incorporating free energies from CALPHAD database is employed to analyse curvature-driven shape-instabilities, in the absence of any phase transformations. Owing to the instabilities, morphological evolution occurs. In this study, previous works [1, 2] are extended to capture the influence of the neighbouring rods on the volume-diffusion governed transformation of finite 3-dimensional facetted rods. It is identified that the terminal rods strongly influence the carbon redistribution. Furthermore, we observe, in the later stages of transformation, that the neighbouring rods introduce a reverse mass transfer towards the terminal rods. The interplay of those two aforementioned effects causes a shift of the critical aspect ratio (\(w/t_p\)) of the rods, above which the spheroidization is accompanied by the breaking-up of rods (‘ovulation’).


Phase-field modelling Spheroidization Shape-instabilities 3-dimensional rods Lamellar arrangement 



The authors thank the German Research Foundation (DFG) for funding our investigations through the project with number AN 1245/1. This work was performed on the computational resource ForHLR II funded by the Ministry of Science, Research and the Arts Baden-Wuerttemberg and DFG. Authors acknowledge the primary guidance of Prof. Kumar Ankit, Dr. Avisor Bhattacharya and Dr. Fei Wang.


  1. 1.
    Amos, P.G.K., Musheronga, L.T., Nestler, B.: Phase-field analysis of volume-diffusion controlled shape-instabilities in metallic systems-I 2-dimensional plate-like structures. Comput. Mater. Sci. 144, 363–373 (2018). Scholar
  2. 2.
    Amos, P.G.K., Musheronga, L.T., Mittnacht, T., Nestler, B.: Phase-field analysis of volume-diffusion controlled shape-instabilities in metallic systems-II: finite 3-dimensional rods. Comput. Mater. Sci. 144, 374–385 (2018). Scholar
  3. 3.
    Nichols, F.A., Mullins, W.W.: Morphological changes of a surface of revolution due to capillarity-induced surface diffusion. J. Appl. Phys. 36, 1826–1835 (1965). Scholar
  4. 4.
    Qian, M., Baicheng, L., Runqi, L.: Thermodynamic considerations of the equilibrium shape of an infinitely long rod. Acta Metallurgica et Materialia 42, 4083–4086 (1994). Scholar
  5. 5.
    Tian, L., Russell, A.: Phase field study of interfacial diffusion-driven spheroidization in a composite comprised of two mutually insoluble phases. J. Chem. Phys. 140 (2014). Scholar
  6. 6.
    Joshi, C., Abinandanan, T.A., Choudhury, A.: Phase field modelling of Rayleigh instabilities in the solid-state. Acta Materialia 109 (2016). Scholar
  7. 7.
    Wang, F., Mukherjee, R., Selzer, M., Nestler, B.: Numerical study on solutal Marangoni instability in finite systems with a miscibility gap. Phys. Fluids 26 (2014). Scholar
  8. 8.
    Wang, F., Nestler, B.: Detachment of nanowires driven by capillarity. Scripta Mater. 113, 167 (2016)CrossRefGoogle Scholar
  9. 9.
    Ankit, K., Mukherjee, R. Mittnacht, T., Nestler, B.: Deviations from cooperative growth mode during eutectoid transformation: insights from a phase-field approach. Acta Materialia 81 (2014). Scholar
  10. 10.
    Garcke, H., Nestler, B., Stoth, B.: A multi-phase field concept: numerical simulations of moving phase boundaries and multiple junctions. SIAM J. Appl. Math. 60 (1999). Scholar
  11. 11.
    Choudhury, A., Nestler, B.: Grand-potential formulation for multicomponent phase transformations combined with thin-interface asymptotics of the double-obstacle potential. Phys. Rev. E 85 (2012).
  12. 12.
    Porter, D.A., Easterling, K.E., Sherif, M.: Phase Transformations in Metals and Alloys (Revised Reprint). CRC Press, Boca Raton (2009)Google Scholar
  13. 13.
    Zheng, S., Carpenter, J.S., Wang, J., Mara, N.A., Beyerlein, I.J.: An interface facet driven Rayleigh instability in high-aspect-ratio bimetallic nanolayered composites. Appl. Phys. Lett. 105 (2014) Scholar
  14. 14.
    Trepczyńska-Łent, M.: Rod and lamellar growth of eutectic. Arch. Foundry Eng. 10, 179–184 (2010)Google Scholar
  15. 15.
    Guzik, E., Kopyciński, D.: Modeling structure parameters of irregular eutectic growth: modification of Magnin-Kurz theory. Metall. Mater. Trans. A 37 (2006). Scholar
  16. 16.
    Hoetzer, J., Reiter, A., Hierl, H., Steinmetz, P., Selzer, M., Nestler, B.:The parallel multi-physics phase-field framework Pace3D. J. Comput. Sci. 26 (2018).
  17. 17.
    Ankit, K., Choudhury, A., Qin, C., Schulz, S., McDaniel, M., Nestler, B.: Theoretical and numerical study of lamellar eutectoid growth influenced by volume diffusion. Acta Materialia 61, 4245–4253 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Tobias Mittnacht
    • 1
    Email author
  • P. G. Kubendran Amos
    • 1
  • Daniel Schneider
    • 1
    • 2
  • Britta Nestler
    • 1
    • 2
  1. 1.Institute of Applied Materials (IAM-CMS), Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Institute of Digital Materials Science (IDM)Karlsruhe University of Applied SciencesKarlsruheGermany

Personalised recommendations