Advertisement

Metamodel-Based Analysis of Cross-Flow-Induced Vibrations

  • Sabine Upnere
  • Janis Auzins
  • Normunds Jekabsons
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

This work presents the study of numerical modelling of the fluid flow and circular cylinder interaction to investigate the cross-flow induced vibrations in the rod bundle. It is assumed that failure due to flow-induced vibrations of the rod can be described by the reduction of the rod mass, the rod support stiffness or damping coefficient. The metamodel-based approach is applied to investigate the main trends of the system’s characteristic behaviour related to the variations of the chosen parameters. The two-dimensional Finite Volume models have been developed using open-source software to get a mapping of input and output variables for the metamodel. The impact of assumed failure parameters (the mass, the stiffness and the damping) on the vibration amplitude and frequency of the oscillating rod is analysed.

Keywords

Cross-flow Flow-induced vibrations Metamodel Rod bundle Vibration amplitude Vibration frequency 

References

  1. 1.
    Meckesheimer, M., Booker, A.J., Barton, R.R., Simpson, T.W.: Computationally inexpensive metamodel assessment strategies. AIAA J. 40(10), 2053–2060 (2002).  https://doi.org/10.2514/2.1538CrossRefGoogle Scholar
  2. 2.
    Braatz, A.L., Hisken, H.: Response surfaces for advanced consequence models: two approaches. J. Loss Prevent. Proc. Ind. 49, 683–699 (2017).  https://doi.org/10.1016/j.jlp.2017.02.007CrossRefGoogle Scholar
  3. 3.
    Madsen, J.I., Shyy, W., Haftka, T.R.: Response surface techniques for diffuser shape optimization. AIAA J. 38(9), 1512–1518 (2000).  https://doi.org/10.2514/2.1160CrossRefGoogle Scholar
  4. 4.
    Viana, F.A.C.: A tutorial on Latin Hypercube design of experiments. Qual. Reliab. Engng. Int. 32(5), 1975–1985 (2016).  https://doi.org/10.1002/qre.1924CrossRefGoogle Scholar
  5. 5.
    Forrester, A.I.J., Keane, A.J.: Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 45(1–3), 50–79 (2009).  https://doi.org/10.1016/j.paerosci.2008.11.001CrossRefGoogle Scholar
  6. 6.
    Weaver, D.S., El-Kashlan, M.: On the number of tube rows required to study cross-flow induced vibrations in tube banks. J. of Sound Vibr. 75, 265–273 (1981).  https://doi.org/10.1016/0022-460X(81)90344-8CrossRefGoogle Scholar
  7. 7.
    Sessarego, M., Ramos-García, N., Yang, H., Shen, W.Z.: Aerodynamic wind-turbine rotor design using surrogate modeling and three-dimensional viscous inviscid interaction technique. Renew. Energy 93, 620–635 (2016).  https://doi.org/10.1016/j.renene.2016.03.027CrossRefGoogle Scholar
  8. 8.
    Auzins, J.: Direct optimization of experimental design. In: 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, No 2004-4578. AIAA, Albany (2004).  https://doi.org/10.2514/6.2004-4578
  9. 9.
    Jin, R., Chen, W., Simpson, T.: Comparative studies of metamodelling techniques under multiple modelling criteria. Struct. Multidisc. Optim. 23(1), 1–13 (2001).  https://doi.org/10.1007/s00158-001-0160-4CrossRefGoogle Scholar
  10. 10.
    Kleijnen, J.P.C., Sargent, R.G.: A methodology for fitting and validating metamodels in simulation. Eur. J. Oper. Res. 120(1), 14–29 (2000).  https://doi.org/10.1016/S0377-2217(98)00392-0CrossRefzbMATHGoogle Scholar
  11. 11.
    Kalnins, K., Auzins, J., Rikards, R.: A fast simulation procedure for ribbed composite structures with material degradation. Mech. Com. Mat. 43(3), 225–232 (2007).  https://doi.org/10.1007/s11029-007-0022-2CrossRefGoogle Scholar
  12. 12.
    Hassan, M., Gerber, A., Omar, H.: Numerical estimation of fluidelastic instability in tube arrays. J. Press. Vessel Technol. 132(4), 04130 (2010).  https://doi.org/10.1115/1.4002112CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Sabine Upnere
    • 1
    • 2
  • Janis Auzins
    • 1
  • Normunds Jekabsons
    • 3
  1. 1.Institute of MechanicsRiga Technical UniversityRigaLatvia
  2. 2.Ventspils University of Applied SciencesVentspilsLatvia
  3. 3.Faculty of Physics and MathematicsUniversity of LatviaRigaLatvia

Personalised recommendations